python梯度下降法求解三元线性回归系数,并绘制结果

2024-05-26 01:04

本文主要是介绍python梯度下降法求解三元线性回归系数,并绘制结果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
X1 = 2 * np.random.rand(100, 1)
X2 = 3 * np.random.rand(100, 1)
X3 = 4 * np.random.rand(100, 1)
y = 4 + 3 * X1 + 5 * X2 + 2 * X3 + np.random.randn(100, 1)

# 合并特征
X_b = np.hstack([np.ones((100, 1)), X1, X2, X3])

# 梯度下降求解多元线性回归系数
eta = 0.1  # 学习率
n_iterations = 1000  # 迭代次数
m = 100  # 样本数

theta = np.random.randn(4, 1)  # 初始化参数

for iteration in range(n_iterations):
    gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
    theta -= eta * gradients

# 打印得到的参数
print("得到的参数为:", theta)

# 绘制结果
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

# 绘制原始数据点
ax.scatter(X1, X2, y, c='b', marker='o')

# 生成新数据点
X1_new = np.linspace(0, 2, 100)
X2_new = np.linspace(0, 3, 100)
X1_new, X2_new = np.meshgrid(X1_new, X2_new)
X3_new = (-theta[0] - theta[1] * X1_new - theta[2] * X2_new) / theta[3]

# 绘制平面
ax.plot_surface(X1_new, X2_new, X3_new, alpha=0.5)

ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.set_zlabel('y')

plt.show()
 

这篇关于python梯度下降法求解三元线性回归系数,并绘制结果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003120

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

【WebGPU Unleashed】1.1 绘制三角形

一部2024新的WebGPU教程,作者Shi Yan。内容很好,翻译过来与大家共享,内容上会有改动,加上自己的理解。更多精彩内容尽在 dt.sim3d.cn ,关注公众号【sky的数孪技术】,技术交流、源码下载请添加微信号:digital_twin123 在 3D 渲染领域,三角形是最基本的绘制元素。在这里,我们将学习如何绘制单个三角形。接下来我们将制作一个简单的着色器来定义三角形内的像素

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

Flutter 进阶:绘制加载动画

绘制加载动画:由小圆组成的大圆 1. 定义 LoadingScreen 类2. 实现 _LoadingScreenState 类3. 定义 LoadingPainter 类4. 总结 实现加载动画 我们需要定义两个类:LoadingScreen 和 LoadingPainter。LoadingScreen 负责控制动画的状态,而 LoadingPainter 则负责绘制动画。

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',