本文主要是介绍分类预测 | Matlab实现ZOA-SVM斑马算法优化支持向量机的多变量输入数据分类预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
分类预测 | Matlab实现ZOA-SVM斑马算法优化支持向量机的多变量输入数据分类预测
目录
- 分类预测 | Matlab实现ZOA-SVM斑马算法优化支持向量机的多变量输入数据分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果
基本描述
1.Matlab实现ZOA-SVM斑马算法优化支持向量机的多变量输入数据分类预测(完整源码和数据) 优化支持向量机核函数参数c和g。
2.多特征输入单输出的二分类及多分类模型。运行环境matlab2018。
3.语言为matlab,含分类效果图,迭代优化图,混淆矩阵图。
4.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2018及以上。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整程序和数据获取方式私信博主回复Matlab实现ZOA-SVM斑马算法优化支持向量机的多变量输入数据分类预测。
%% 参数设置
% 定义优化参数的个数,在该场景中,优化参数的个数dim为2 。
% 定义优化参数的上下限,如c的范围是[0.01, 1], g的范围是[2^-5, 2^5],那么参数的下限lb=[0.01, 2^-5];参数的上限ub=[1, 2^5]。
%目标函数
fun = @getObjValue;
% 优化参数的个数 (c、g)
dim = 2;
% 优化参数的取值下限
lb = [10^-1, 1];
ub = [10^2, 2^8];%% 参数设置
pop =6; %种群数量
maxgen=100;%最大迭代次数
%% 优化(这里主要调用函数)
c = Best_pos(1, 1);
g = Best_pos(1, 2);
toc
% 用优化得到c,g训练和测试
cmd = ['-s 0 -t 2 ', '-c ', num2str(c), ' -g ', num2str(g), ' -q'];
model = libsvmtrain(T_train, P_train, cmd);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
这篇关于分类预测 | Matlab实现ZOA-SVM斑马算法优化支持向量机的多变量输入数据分类预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!