3D 生成重建011-LucidDreamer 优化SDS过平滑结果的一种探索

2024-05-25 14:12

本文主要是介绍3D 生成重建011-LucidDreamer 优化SDS过平滑结果的一种探索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3D 生成重建011-LucidDreamer 优化SDS过平滑结果的一种探索


文章目录

    • 0论文工作
    • 1论文方法
    • 2 效果

0论文工作

文本到3D生成的最新进展标志着生成模型的一个重要里程碑,为在各种现实场景中创建富有想象力的3D资产打开了新的可能性。虽然最近在文本到3D生成方面的进展显示出了希望,但它们在渲染详细和高质量的3D模型方面往往不足。这个问题特别普遍,因为有许多方法都可以使用蒸馏取样(SDS)。本文指出了SDS的一个明显缺陷,即它给三维模型带来了不一致和低质量的更新方向,导致了过度更新平滑作用为了解决这个问题,我们提出了一种新的方法,称为间隔分数匹配(ISM)。ISM采用确定性扩散轨迹,并利用基于区间的分数匹配部分过度平滑。此外,我们将**三维高斯溅(3D GS)**合并到我们的文本到三维生成管道中。大量的实验表明,我们的模型在很大程度上优于最先进的技术质量和培训效率。
LucidDreamer 旨在解决从文本提示生成高保真三维形状的挑战。该论文指出了现有文本到三维方法的关键局限性,特别是它们难以在样本质量和多样性之间取得平衡。LucidDreamer 以区间得分匹配 (ISM) 为中心的新方法,用于三维生成的扩散模型,从而缓解了这些问题。实际上这种sds相减在magic123和sparsefusion等3d生成都用了相似的技巧,只不过不同作者选择了不同的解释角度。甚至在纹理生成也使用了类似技巧。

1论文方法

  1. 现有方法存在的问题:
    多样性有限: 许多文本到三维模型优先考虑生成与文本一致的合理形状,这通常会导致多样性低和输出重复。
    质量和多样性之间的权衡: 在高保真度细节和生成形状的广泛性之间取得平衡是一项重大挑战。
    下图是论文的结构图,可以发现论文的结构上与SDS优化流派的方法保持一样的结构,一个3d表示,渲染新视图,SDS优化。不同的是论文是早期使用3d gaussian splatting表示的方法。另外论文使用了DDIM和ISM等不同处理。
    此外论文用一个图对SDS过平滑进行一个可视化。简单来说,多次的降噪就是在对不同降噪结果直接求了平均,会导致过平滑。
    在这里插入图片描述

在这里插入图片描述

  1. LucidDreamer 的解决方案:
    a) 区间得分匹配 (ISM): 这是 LucidDreamer 创新的核心。 ISM 为训练用于三维形状生成的扩散模型提供了一种新方法。
  • 核心理念: ISM 不是直接预测噪声数据分布,而是侧重于学习数据两个扰动版本之间的差异(得分)。这允许更有效的训练并更好地捕获底层数据流形,从而生成更高质量的样本。
  • 工作原理:
    1. 使用不同的噪声级别对目标三维形状的两个噪声版本进行采样。
    2. 训练扩散模型以预测这两个噪声版本之间的得分(矢量差)。
    3. 在生成过程中,模型通过迭代应用学习到的得分信息来逐渐对随机三维形状进行去噪。
      b) 用于文本引导生成的得分蒸馏: 为了使用文本提示引导生成过程,LucidDreamer 使用了得分蒸馏。
  • 训练文本到得分网络: 训练一个单独的网络将文本描述映射到相应的三维形状得分。该网络充当文本域和三维形状域之间的“翻译器”。
  • 引导生成: 在生成过程中,来自文本到得分网络的得分会影响扩散过程,确保生成的三维形状与给定的文本提示一致。为了克服多面问题,论文还插入一个3d先验模块。
  1. LucidDreamer 的优势:
    高保真生成: 通过利用 ISM,LucidDreamer 可以生成具有令人印象深刻的细节和真实感的三维形状。
    增强的多样性: 与现有方法相比,使用 ISM 有助于生成更广泛的多样化形状,解决了输出重复的问题。
    有效的文本引导: 得分蒸馏方法使模型能够有效地整合文本信息,确保生成的三维形状与输入提示之间语义一致。
    此外论文用一个图对SDS过平滑进行一个可视化。简单来说,多次的降噪就是在对不同降噪结果直接求了平均,会导致过平滑。

2 效果

在这里插入图片描述

这篇关于3D 生成重建011-LucidDreamer 优化SDS过平滑结果的一种探索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1001731

相关文章

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J