狂读专题

【点云处理之论文狂读经典版11】—— Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling

KCNet: Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling 摘要引言方法Learning on Local Geometric StructureLearning on Local Feature Structure 实验Shape ClassificationPart Segmenta

【点云处理之狂读论文经典篇2】——Multi-view Convolutional Neural Networks for 3D Shape Recognition

MVCNN:一种用于3D形状识别的多视图卷积神经网络 摘要1. 引言2. 相关工作3. 方法3.1 Input: A Multi-view Representation3.2 Recognition with Multi-view Representations3.3 Multi-view CNN: Learning to Aggregate Views 4. 实验4.1 3D Shape

【点云处理之论文狂读经典版14】—— Dynamic Graph CNN for Learning on Point Clouds

DGCNN:Dynamic Graph CNN for Learning on Point Clouds 摘要方法Edge ConvolutionDynamic Graph UpdateProperties 实验ClassificationPart SegmentationIndoor Scene Segmentation 展望生词 摘要 背景: 对于计算机图形学中的许多应用而言

【点云处理之论文狂读前沿版1】——Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual MLP

重新审视点云处理中的网络设计和局部几何结构——一个简单的残差MLP框架 1.摘要2.引言2.相关工作3.方法3.1 Revisiting point-based methods3.2 PointMLP的框架结构3.3 Geometric Affine Module3.4 计算复杂度和Elite版 4.实验4.1 Shape classification on ModelNet4.2 Shap