ss928专题

海思SD3403,SS928/926,hi3519dv500,hi3516dv500移植yolov7,yolov8(18)-Yolov8改进

yolov8进行二次改进后进行了量化和速度测试 ,没有明显速度增加。对比一下模型的性能。 分别用原始模型和改后的模型进行了100 epochs训练。 以下是原始模型的结果。 class P R map@0.5 map@.95 1 0.79 0.49 0.571 0.316 2 0.851 0.738 0.801 0.538 改进后的模型结果。 cla

3.1 海思SS928开发 - 烧写工具 - ToolPlatform 安装及配置

3.1 烧写工具 - ToolPlatform 安装及配置 ToolPlatform 安装 进入到开发虚拟机,将文件 ~/hiss928/sdk/ema_2.0.2.2/pc/ToolPlatform/ToolPlatform-1.0.11-win32-x86_64.zip 拷贝至 PC 上。PC 要求安装了 win7 及以上的操作系统。解压压缩包 ToolPlatform-1.0.11-wi

SS928-板端记录

0. 写在前面         记录ss928调用摄像头流程。 1. 代码流程记录         static td_s32 sample_vio_two_sensor(td_void); #define VB_DOUBLE_YUV_CNT 15#define VB_WDR_RAW_CNT 8ot_vi_vpss_mode_type mode_type = OT_VI_O

海思SD3403,SS928/926,hi3519dv500,hi3516dv500移植yolov7,yolov8(7)

上一篇用MindStudio转换完om模型,就可以在板卡里进行推理验证了。 SDK里有相关推理的demo,只要om模型转换没有遇到问题,是可以做推理验证。 首先SDK里推理验证方式有两种,一个是用H264实时视频流的方式,还有一种是通过图片的方式。  H264方式需要准备好FFMPEG,通过本地视频转换成H264视频流推给板卡。用下面指令就可以。 ffmpeg的安装使用就不在这里介

海思SD3403,SS928/926,hi3519dv500,hi3516dv500移植yolov7,yolov8(3)

经过调试后中终于在hi3519dv500和hi3516dv500两个平台中都实现的算法验证。同时可以做自己定制的算法模型的移植了,下面是两个移植案例效果。       识别运行时间上做了对比和统计,具体的可以看下面的表格。 总体来说速度还是比较快的,Yolo系列算法实时运行是几乎没有任何问题。 训练到量化过程已经全部验证完,期待在项目中使用。 涉及到技术细

海思SD3403,SS928/926,hi3519dv500,hi3516dv500移植yolov7,yolov8(2)

本篇是在海思嵌入式芯片中移植yolov7和yolov8的第二篇。做一个调试的小总结。 目前手上有SS928还有Hi3516dv500两个板子,3519DV500板子还没开始调。Hi3519dv500和3516是同一套SDK,基本上是一样的,算力稍高一点,ARM主频高一点。     我们主要对yolov7和yolov8进行了从训练到量化,部署的工作。训练之前要改一下训练源码,

SS928开发板 开发记录三: nfs 挂载

1.创建nfs文件 1.安装nfs sudo apt-get install nfs-kernel-server  2.创建文件 sudo mkdir /home/nfsroot 3.给权限 sudo chmod 777 nfsroot  4.设置 vim /etc/exports 最后一行加入 /nfsroot *(rw,sync,no_root_squash)

SS928官方vo例子适配mipi屏

这里写目录标题 背景硬件原理测试代码LCD复位和背光使能信号控制(即GPIO输出控制)mipi屏幕初始化序列mipi 配置参数计算时序参数计算时钟输入图像设置 参考文件 背景 最近新购一款SS928的开发板,但其外部只提供了HDMI显示接口,官方未适配MIPI屏,考虑到调试的时候每次找HDMI显示器不方便,就自己画了个板子匹配了一款mipi的显示屏,屏幕为:8.0 inch I