论文题目:《The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification》 链接:https://arxiv.org/abs/2002.04264 来源:IEEE TIP2020 细粒度分类的主要思想是找出各个子类间的可区分特征,因此文章指出要尽早在通道上进行钻研,而不是从合并
*原创文章,非作者允许,禁止一切形式的转载。 Stereo Processing by Semi-Global Matching and Mutual Information 是立体匹配中一个非常有名的算法,算法快、重建精度也不错、非常适合并行加速。 A.匹配代价计算 这部分作者在讲匹配代价计算,作者用的是信息熵,然而在实际应用中发现这一匹配代价好像效果也比较一般,使用census t
原文标题是Variational Information Distillation for Knowledge Transfer,是CVPR2019的录用paper。 VID方法 思路比较简单,就是利用互信息(mutual information,MI)的角度,增加teacher网络与student网络中间层特征的MI,motivation是因为MI可以表示两个变量的依赖程度,MI越大,表明