从零入门激光SLAM(二十)——IESKF代码实现

2024-05-24 22:36

本文主要是介绍从零入门激光SLAM(二十)——IESKF代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好呀,我是一个SLAM方向的在读博士,深知SLAM学习过程一路走来的坎坷,也十分感谢各位大佬的优质文章和源码。随着知识的越来越多,越来越细,我准备整理一个自己的激光SLAM学习笔记专栏,从0带大家快速上手激光SLAM,也方便想入门SLAM的同学和小白学习参考,相信看完会有一定的收获。如有不对的地方欢迎指出,欢迎各位大佬交流讨论,一起进步。博主创建了一个科研互助群Q:772356582,欢迎大家加入讨论。

源码是高博大佬的,网址如下 

slam_in_autonomous_driving/src/ch8 at master · gaoxiang12/slam_in_autonomous_driving · GitHub

下面对代码的逻辑和主要函数进行解析

一、IESKF结构

  • 参数配置/设置状态变量

    struct Options {Options() = default;/// IEKF配置int num_iterations_ = 3;  // 迭代次数double quit_eps_ = 1e-3;  // 终止迭代的dx大小/// IMU 测量与零偏参数double imu_dt_ = 0.01;         // IMU测量间隔double gyro_var_ = 1e-5;       // 陀螺测量标准差double acce_var_ = 1e-2;       // 加计测量标准差double bias_gyro_var_ = 1e-6;  // 陀螺零偏游走标准差double bias_acce_var_ = 1e-4;  // 加计零偏游走标准差/// RTK 观测参数double gnss_pos_noise_ = 0.1;                   // GNSS位置噪声double gnss_height_noise_ = 0.1;                // GNSS高度噪声double gnss_ang_noise_ = 1.0 * math::kDEG2RAD;  // GNSS旋转噪声/// 其他配置bool update_bias_gyro_ = true;  // 是否更新biasbool update_bias_acce_ = true;  // 是否更新bias};// nominal stateSO3 R_;VecT p_ = VecT::Zero();VecT v_ = VecT::Zero();VecT bg_ = VecT::Zero();VecT ba_ = VecT::Zero();VecT g_{0, 0, -9.8};// error stateVec18T dx_ = Vec18T::Zero();// covarianceMat18T cov_ = Mat18T::Identity();// noiseMotionNoiseT Q_ = MotionNoiseT::Zero();GnssNoiseT gnss_noise_ = GnssNoiseT::Zero();Options options_;
    
  • 设置初始条件
    void SetInitialConditions(Options options, const VecT& init_bg, const VecT& init_ba,const VecT& gravity = VecT(0, 0, -9.8)) {BuildNoise(options);options_ = options;bg_ = init_bg;ba_ = init_ba;g_ = gravity;cov_ = 1e-4 * Mat18T::Identity();cov_.template block<3, 3>(6, 6) = 0.1 * math::kDEG2RAD * Mat3T::Identity();}
    //构建噪声模型
    void BuildNoise(const Options& options) {double ev = options.acce_var_;double et = options.gyro_var_;double eg = options.bias_gyro_var_;double ea = options.bias_acce_var_;double ev2 = ev;  // * ev;double et2 = et;  // * et;double eg2 = eg;  // * eg;double ea2 = ea;  // * ea;// set QQ_.diagonal() << 0, 0, 0, ev2, ev2, ev2, et2, et2, et2, eg2, eg2, eg2, ea2, ea2, ea2, 0, 0, 0;double gp2 = options.gnss_pos_noise_ * options.gnss_pos_noise_;double gh2 = options.gnss_height_noise_ * options.gnss_height_noise_;double ga2 = options.gnss_ang_noise_ * options.gnss_ang_noise_;gnss_noise_.diagonal() << gp2, gp2, gh2, ga2, ga2, ga2;
    }
    
  • 使用IMU预测

    bool IESKF<S>::Predict(const IMU& imu) {/// Predict 部分与ESKF完全一样,不再解释assert(imu.timestamp_ >= current_time_);double dt = imu.timestamp_ - current_time_;if (dt > (5 * options_.imu_dt_) || dt < 0) {LOG(INFO) << "skip this imu because dt_ = " << dt;current_time_ = imu.timestamp_;return false;}VecT new_p = p_ + v_ * dt + 0.5 * (R_ * (imu.acce_ - ba_)) * dt * dt + 0.5 * g_ * dt * dt;VecT new_v = v_ + R_ * (imu.acce_ - ba_) * dt + g_ * dt;SO3 new_R = R_ * SO3::exp((imu.gyro_ - bg_) * dt);R_ = new_R;v_ = new_v;p_ = new_p;Mat18T F = Mat18T::Identity();F.template block<3, 3>(0, 3) = Mat3T::Identity() * dt;F.template block<3, 3>(3, 6) = -R_.matrix() * SO3::hat(imu.acce_ - ba_) * dt;F.template block<3, 3>(3, 12) = -R_.matrix() * dt;F.template block<3, 3>(3, 15) = Mat3T::Identity() * dt;F.template block<3, 3>(6, 6) = SO3::exp(-(imu.gyro_ - bg_) * dt).matrix();F.template block<3, 3>(6, 9) = -Mat3T::Identity() * dt;cov_ = F * cov_ * F.transpose() + Q_;current_time_ = imu.timestamp_;return true;
    }
    
  • 迭代观测模型

    using CustomObsFunc = std::function<void(const SE3& input_pose, Eigen::Matrix<S, 18, 18>& HT_Vinv_H,Eigen::Matrix<S, 18, 1>& HT_Vinv_r)>;
    // 使用自定义观测函数更新滤波器
    bool IESKF<S>::UpdateUsingCustomObserve(IESKF::CustomObsFunc obs) {// H阵由用户给定// 保存当前的旋转矩阵SO3 start_R = R_;Eigen::Matrix<S, 18, 1> HTVr;Eigen::Matrix<S, 18, 18> HTVH;Eigen::Matrix<S, 18, Eigen::Dynamic> K;Mat18T Pk, Qk;//进入残差更新循环for (int iter = 0; iter < options_.num_iterations_; ++iter) {// 调用用户提供的观测函数//GetNominalSE3()获取当前名义状态位姿
    //SE3 GetNominalSE3() const { return SE3(R_, p_); }//HTVH卡尔曼更新步骤中用于修正预测的协方差矩阵//HTVr卡尔曼更新步骤中用于修正预测的状态变量obs(GetNominalSE3(), HTVH, HTVr);// 投影协方差矩阵PMat18T J = Mat18T::Identity();J.template block<3, 3>(6, 6) = Mat3T::Identity() - 0.5 * SO3::hat((R_.inverse() * start_R).log());Pk = J * cov_ * J.transpose();// 卡尔曼更新Qk = (Pk.inverse() + HTVH).inverse();   // 计算更新后的协方差矩阵Qkdx_ = Qk * HTVr; // 计算状态增量dx_// LOG(INFO) << "iter " << iter << " dx = " << dx_.transpose() << ", dxn: " << dx_.norm();//将增量dx_合并到名义变量中Update();// 检查增量的范数是否小于终止阈值if (dx_.norm() < options_.quit_eps_) {break;}}// 更新协方差矩阵update Pcov_ = (Mat18T::Identity() - Qk * HTVH) * Pk;// 再次投影协方差矩阵PMat18T J = Mat18T::Identity();Vec3d dtheta = (R_.inverse() * start_R).log();J.template block<3, 3>(6, 6) = Mat3T::Identity() - 0.5 * SO3::hat(dtheta);cov_ = J * cov_ * J.inverse();// 重置状态增量dx_.setZero();return true;
    }

详情请见...

 从零入门激光SLAM(二十)——IESKF代码解释 - 古月居 (guyuehome.com)

这篇关于从零入门激光SLAM(二十)——IESKF代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999725

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("