变分自编码器(VAE)与生成对抗网络(GAN)在TensorFlow中实现

2024-05-24 20:08

本文主要是介绍变分自编码器(VAE)与生成对抗网络(GAN)在TensorFlow中实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

变分自编码器(VAE)与生成对抗网络(GAN)是复杂分布上无监督学习最具前景的两类方法。本文中,作者在MNIST上对这两类生成模型的性能进行了对比测试。

本项目总结了使用变分自编码器(Variational Autoencode,VAE)和生成对抗网络(GAN)对给定数据分布进行建模,并且对比了这些模型的性能。你可能会问:我们已经有了数百万张图像,为什么还要从给定数据分布中生成图像呢?正如Ian Goodfellow在NIPS 2016教程中指出的那样,实际上有很多应用。我觉得比较有趣的一种是使用GAN模拟可能的未来,就像强化学习中使用策略梯度的智能体那样。

VAE

变分自编码器柯林斯用于对先验数据分布进行建模从名字上就可以看出,它包括两部分:。编码器和解码器编码器将数据分布的高级特征映射到数据的低级表征,低级表征叫作本征向量(latent vector)。解码器吸收数据的低级表征,然后输出同样数据的高级表征。

从数学上来讲,让X作为编码器的输入,z作为本征向量,X'作为解码器的输出。


图1 VAE的架构

这与标准自编码器有何不同?关键区别在于我们对本征向量的约束。如果是标准自编码器,那么我们主要关注重建损失(即重建损失),即:


而在变分自编码器的情况中,我们希望本征向量遵循特定的分布,通常是单位高斯分布(unit Gaussian distribution),使下列损失得到优化:


其中,P(Z')N(0,I)中我指单位矩阵(身份MATRX)中,q(z|X)是本征向量的分布。KL(A,B)是分布乙到甲的KL散度


其中,状语从句:由神经网络来计算。

由于损失函数中还有其他项,因此存在模型生成图像的精度和本征向量的分布与单位高斯分布的接近程度之间存在权衡(折衷)。这两部分由两个超参数λ_1和λ_2来控制。

甘斯

GAN是根据给定的先验分布生成数据的另一种方式,包括同时进行的两部分:判别器和生成器。

判别器用于对“真”图像和“伪”图像进行分类,生成器从随机噪声中生成图像(随机噪声通常叫作本征向量或代码,该噪声通常从均匀分布(均匀分布)或高斯分布中获取)。

生成器的任务是生成可以以假乱真的图像,令判别器也无法区分出来。也就是说,生成器和判别器是互相对抗的。判别器非常努力地尝试区分真伪图像,同时生成器尽力生成更加逼真的图像,使判别器将这些图像也分类为「真」图像。


图2 GAN的典型结构


训练GAN的难点

训练GAN时我们会遇到一些挑战,我认为其中最大的挑战在于本征向量/代码的采样。代码只是从先验分布中对本征变量的噪声采样。有很多种方法可以克服该挑战,包括:使用VAE对本征变量进行编码,学习数据的先验分布。这听起来要好一些,因为编码器能够学习数据分布,现在我们可以从分布中进行采样,而不是生成随机噪声。


训练细节

我们知道两个分布p(真实分布)和q(估计分布)之间的交叉熵通过以下公式计算:


对于二元分类:


对于GAN,我们假设分布的一半来自真实数据分布,一半来自估计分布,因此:


训练GAN需要同时优化两个损失函数。

按照极小极大值算法:


这里,判别器需要区分图像的真伪,不管图像是否包含真实物体,都没有注意力。当我们在CIFAR上检查GAN生成的图像时会明显看到这一点。

VAE生成的图像与GAN生成的图像相比,前者更加模糊。这个结果在预料之中,因为VAE生成模型的所有输出都是分布的平:均。为了减少图像的模糊,我们可以使用L1损失来代替L2损失。


我们可以重新定义判别器损失目标,使之包含标签。这被证明可以提高主观样本的质量。

如:在MNIST或CIFAR-10(两个数据集都有10个类别)。

参考:

原文链接:HTTPS://kvmanohar22.github.io/Generative-Models/

项目链接:HTTPS://github.com/kvmanohar22/Generative-Models

最新进展:关于变分自编码器(VAE)与生成对抗网络(GAN)的最新研究理论,参考我的上个博客。

在CVPR2018会议上,DeepMInd科学家分享了结合GANs和VAEs各自优势的GAN hybrids模型,两者不仅可以提高VAE的采样质量和改善表示学习,另一方面也可提高GAN的稳定性和丰富度,

这篇关于变分自编码器(VAE)与生成对抗网络(GAN)在TensorFlow中实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999407

相关文章

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin