day 38 435.无重叠区间 763.划分字母区间 56. 合并区间 738.单调递增的数字 968.监控二叉树

本文主要是介绍day 38 435.无重叠区间 763.划分字母区间 56. 合并区间 738.单调递增的数字 968.监控二叉树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

435.无重叠区间

思路

为了使区间尽可能的重叠所以排序来使区间尽量的重叠,使用左边界排序来统计重叠区间的个数与452. 用最少数量的箭引爆气球恰好相反。

代码

class Solution {public int eraseOverlapIntervals(int[][] intervals) {Arrays.sort(intervals,(a,b)->Integer.compare(a[0],b[0]));int count = 0;for (int i = 1; i < intervals.length; i++) {if(intervals[i-1][1] > intervals[i][0]){count++;intervals[i][1] = Math.min(intervals[i-1][1],intervals[i][1]);}}return  count;}
}

763.划分字母区间

思路

首先想到了回溯但是使用回溯依然没有思路,在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。

可以分为如下两步:

  • 统计每一个字符最后出现的位置
  • 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点

代码

class Solution {public List<Integer> partitionLabels(String s) {List<Integer> list = new LinkedList<>();int [] hash = new int[27];char [] chars = s.toCharArray();for (int i = 0; i < chars.length; i++) {hash[chars[i] - 'a'] = i;}int left = 0,right = 0 ;for (int i = 0; i < chars.length; i++) {right = Math.max(right , hash[chars[i] - 'a']);if(i == right){list.add(right -left +1);left = i+1;}}return list;}
}

56. 合并区间

思路

本题的本质其实还是判断重叠区间问题。452. 用最少数量的箭引爆气球 (opens new window)和 435. 无重叠区间都是判断区间重叠,区别就是判断区间重叠后的逻辑,本题是判断区间重贴后要进行区间合并。

代码

class Solution {public int[][] merge(int[][] intervals) {LinkedList<int[]> res = new LinkedList<>();Arrays.sort(intervals, (o1, o2) -> Integer.compare(o1[0], o2[0]));res.add(intervals[0]);for (int i = 1; i < intervals.length; i++) {if (intervals[i][0] <= res.getLast()[1]) {int start = res.getLast()[0];int end = Math.max(intervals[i][1], res.getLast()[1]);res.removeLast();res.add(new int[]{start, end});}else {res.add(intervals[i]);}}return res.toArray(new int[res.size()][]);}
}

738.单调递增的数字

思路

贪心算法

例如98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。

此时是从前向后遍历还是从后向前遍历呢?

从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。

数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。

那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299

class Solution {public int monotoneIncreasingDigits(int n) {String s = String.valueOf(n);char[] chars = s.toCharArray();int start = s.length();for (int i = s.length() - 2; i >= 0; i--) {if (chars[i] > chars[i + 1]) {chars[i]--;start = i+1;}}for (int i = start; i < s.length(); i++) {chars[i] = '9';}return Integer.parseInt(String.valueOf(chars));}
}

968.监控二叉树

思路

题目示例中的摄像头都没有放在叶子节点上!这是很重要的一个线索,摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。

所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。

为什么不从头结点开始看起呢,为啥要从叶子节点看呢?

因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。(也算是一个贪心)

局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,

整体最优:全部摄像头数量所用最少!

思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。

在二叉树中如何从低向高推导呢?

可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。左孩子的返回值,右孩子的返回值,即left 和 right, 以后推导中间节点的状态

难点

每个节点可能有几种状态:

有如下三种:

  • 该节点无覆盖(无摄像头)
  • 本节点有摄像头
  • 本节点有覆盖(无摄像头)

空节点的状态只能是有覆盖

为了让摄像头数量最少,我们要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。

那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。

主要有如下四类情况:

  • 情况1:左右节点都有覆盖

  • 情况2:左右节点至少有一个无覆盖的情况:中间节点(父节点)应该放摄像头

如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:

  • 情况3:左右节点至少有一个有摄像头:左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)
  • 情况4:头结点没有覆盖

代码

class Solution {int result = 0 ;public int minCameraCover(TreeNode root) {if(traversal(root) == 0){result++;}return result;}/**节点的状态值:0 表示无覆盖1 表示 有摄像头2 表示有覆盖后序遍历,根据左右节点的情况,来判读 自己的状态*/public int traversal(TreeNode root){if(root == null) return 2;int left = traversal(root.left);int right = traversal(root.right);if(left==2 && right==2) return 0;if(left == 0 || right ==0){result++;return 1;}if(left == 1 || right ==1){return 2;}return -1;}
}

这篇关于day 38 435.无重叠区间 763.划分字母区间 56. 合并区间 738.单调递增的数字 968.监控二叉树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999337

相关文章

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

基于C#实现PDF文件合并工具

《基于C#实现PDF文件合并工具》这篇文章主要为大家详细介绍了如何基于C#实现一个简单的PDF文件合并工具,文中的示例代码简洁易懂,有需要的小伙伴可以跟随小编一起学习一下... 界面主要用于发票PDF文件的合并。经常出差要报销的很有用。代码using System;using System.Col

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

Python视频剪辑合并操作的实现示例

《Python视频剪辑合并操作的实现示例》很多人在创作视频时都需要进行剪辑,本文主要介绍了Python视频剪辑合并操作的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录介绍安装FFmpegWindowsMACOS安装MoviePy剪切视频合并视频转换视频结论介绍

springboot健康检查监控全过程

《springboot健康检查监控全过程》文章介绍了SpringBoot如何使用Actuator和Micrometer进行健康检查和监控,通过配置和自定义健康指示器,开发者可以实时监控应用组件的状态,... 目录1. 引言重要性2. 配置Spring Boot ActuatorSpring Boot Act