gpt2使用ggml推理

2024-05-24 19:28
文章标签 使用 推理 gpt2 ggml

本文主要是介绍gpt2使用ggml推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

gpt2使用ggml推理

ggml/examples/gpt-2/main-backend.cpp :

#include "ggml/ggml.h"
#include "ggml/ggml-alloc.h"
#include "ggml/ggml-backend.h"#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif#include "common.h"
#include "common-ggml.h"#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>#if defined(_MSC_VER)
#pragma warning(disable : 4244 4267) // possible loss of data
#endif#define GPT2_MAX_NODES 4096static void ggml_log_callback_default(ggml_log_level level, const char *text, void *user_data)
{(void)level;(void)user_data;fputs(text, stderr);fflush(stderr);
}// default hparams (GPT-2 117M)
struct gpt2_hparams
{int32_t n_vocab = 50257;int32_t n_ctx = 1024;int32_t n_embd = 768;int32_t n_head = 12;int32_t n_layer = 12;int32_t ftype = 1;float eps = 1e-5f;
};struct gpt2_layer
{// normalizationstruct ggml_tensor *ln_1_g;struct ggml_tensor *ln_1_b;struct ggml_tensor *ln_2_g;struct ggml_tensor *ln_2_b;// attentionstruct ggml_tensor *c_attn_attn_w;struct ggml_tensor *c_attn_attn_b;struct ggml_tensor *c_attn_proj_w;struct ggml_tensor *c_attn_proj_b;// mlpstruct ggml_tensor *c_mlp_fc_w;struct ggml_tensor *c_mlp_fc_b;struct ggml_tensor *c_mlp_proj_w;struct ggml_tensor *c_mlp_proj_b;
};struct gpt2_model
{gpt2_hparams hparams;// normalizationstruct ggml_tensor *ln_f_g;struct ggml_tensor *ln_f_b;struct ggml_tensor *wte;     // position embeddingstruct ggml_tensor *wpe;     //    token embeddingstruct ggml_tensor *lm_head; // language model headstd::vector<gpt2_layer> layers;// key + value memorystruct ggml_tensor *memory_k;struct ggml_tensor *memory_v;//struct ggml_context *ctx_w;struct ggml_context *ctx_kv;ggml_backend_t backend = NULL;ggml_backend_buffer_t buffer_w;ggml_backend_buffer_t buffer_kv;std::map<std::string, struct ggml_tensor *> tensors;
};// load the model's weights from a file  从文件加载模型,初始化ggml后端
bool gpt2_model_load(const std::string &fname, gpt2_model &model, gpt_vocab &vocab, int n_ctx, int n_gpu_layers)
{printf("%s: loading model from '%s'\n", __func__, fname.c_str());auto fin = std::ifstream(fname, std::ios::binary);if (!fin){fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());return false;}// verify magic  校验ggml文件头{uint32_t magic;fin.read((char *)&magic, sizeof(magic));if (magic != GGML_FILE_MAGIC){fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());return false;}}// load hparams  加载超参数{auto &hparams = model.hparams;fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab));fin.read((char *)&hparams.n_ctx, sizeof(hparams.n_ctx));fin.read((char *)&hparams.n_embd, sizeof(hparams.n_embd));fin.read((char *)&hparams.n_head, sizeof(hparams.n_head));fin.read((char *)&hparams.n_layer, sizeof(hparams.n_layer));fin.read((char *)&hparams.ftype, sizeof(hparams.ftype));const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);printf("%s: n_ctx   = %d\n", __func__, hparams.n_ctx);printf("%s: n_embd  = %d\n", __func__, hparams.n_embd);printf("%s: n_head  = %d\n", __func__, hparams.n_head);printf("%s: n_layer = %d\n", __func__, hparams.n_layer);printf("%s: ftype   = %d\n", __func__, hparams.ftype);printf("%s: qntvr   = %d\n", __func__, qntvr);hparams.ftype %= GGML_QNT_VERSION_FACTOR;}// load vocab   加载词汇表{int32_t n_vocab = 0;fin.read((char *)&n_vocab, sizeof(n_vocab));if (n_vocab != model.hparams.n_vocab){fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);return false;}std::string word;std::vector<char> buf(128);for (int i = 0; i < n_vocab; i++){uint32_t len;fin.read((char *)&len, sizeof(len));buf.resize(len);fin.read((char *)buf.data(), len);word.assign(buf.data(), len);vocab.token_to_id[word] = i;vocab.id_to_token[i] = word;}}//对于大张量,我们可以选择将数据存储在 16 位浮点数或量化中// 为了节省内存并加快计算速度// for the big tensors, we have the option to store the data in 16-bit floats or quantized// in order to save memory and also to speed up the computationggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype));if (wtype == GGML_TYPE_COUNT){fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",__func__, fname.c_str(), model.hparams.ftype);return false;}auto &ctx = model.ctx_w;// create the ggml context  根据模型张量数,创建并初始化ggml  context{size_t n_tensors = 2 + 6 + 12 * model.hparams.n_layer;struct ggml_init_params params = {/*.mem_size   =*/ggml_tensor_overhead() * n_tensors,/*.mem_buffer =*/NULL,/*.no_alloc   =*/true,};ctx = ggml_init(params);if (!ctx){fprintf(stderr, "%s: ggml_init() failed\n", __func__);return false;}}// initialize the backend  初始化cuda后端
#ifdef GGML_USE_CUDAif (n_gpu_layers > 0){fprintf(stderr, "%s: using CUDA backend\n", __func__);model.backend = ggml_backend_cuda_init(0);if (!model.backend){fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);}}
#endif// 初始化 metal 后端
#ifdef GGML_USE_METALif (n_gpu_layers > 0){fprintf(stderr, "%s: using Metal backend\n", __func__);ggml_backend_metal_log_set_callback(ggml_log_callback_default, nullptr);model.backend = ggml_backend_metal_init();if (!model.backend){fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);}}
#endif// 初始化cpu后端if (!model.backend){// fallback to CPU backendfprintf(stderr, "%s: using CPU backend\n", __func__);model.backend = ggml_backend_cpu_init();}if (!model.backend){fprintf(stderr, "%s: ggml_backend_cpu_init() failed\n", __func__);return false;}// create the tensors for the model   创建模型张量{const auto &hparams = model.hparams;const int n_embd = hparams.n_embd;const int n_layer = hparams.n_layer;const int n_ctx = hparams.n_ctx;const int n_vocab = hparams.n_vocab;model.layers.resize(n_layer);model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);// map by name 映射张量<名称,张量>model.tensors["model/ln_f/g"] = model.ln_f_g;model.tensors["model/ln_f/b"] = model.ln_f_b;model.tensors["model/wte"] = model.wte;model.tensors["model/wpe"] = model.wpe;model.tensors["model/lm_head"] = model.lm_head;//创建各层张量for (int i = 0; i < n_layer; ++i){auto &layer = model.layers[i];layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd);layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3 * n_embd);layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd);layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4 * n_embd);layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd);layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);// map by name  映射张量表<名称,张量>model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w;model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;}}// allocate the model tensors in a backend buffer  在ggml后端缓冲区中分配模型张量model.buffer_w = ggml_backend_alloc_ctx_tensors(ctx, model.backend);printf("%s: ggml tensor size    = %d bytes\n", __func__, (int)sizeof(ggml_tensor));printf("%s: backend buffer size = %6.2f MB\n", __func__, ggml_backend_buffer_get_size(model.buffer_w) / (1024.0 * 1024.0));// override the default training context with the user-provide 使用用户提供的context数量model.hparams.n_ctx = n_ctx;// key + value memory  创建初始化 k,v缓存context{auto *ctx = model.ctx_kv;// create the ggml context{size_t n_tensors = 2;struct ggml_init_params params = {/*.mem_size   =*/ggml_tensor_overhead() * n_tensors,/*.mem_buffer =*/NULL,/*.no_alloc   =*/true,};ctx = ggml_init(params);if (!ctx){fprintf(stderr, "%s: ggml_init() failed\n", __func__);return false;}}const auto &hparams = model.hparams;const int n_embd = hparams.n_embd;const int n_layer = hparams.n_layer;const int n_ctx = hparams.n_ctx;const int n_mem = n_layer * n_ctx;const int n_elements = n_embd * n_mem;model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);// allocate the KV memory in a backend buffer//  在ggml后端分配k,v缓存model.buffer_kv = ggml_backend_alloc_ctx_tensors(ctx, model.backend);//获取后端内存大小const size_t memory_size = ggml_backend_buffer_get_size(model.buffer_kv);printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size / 1024.0 / 1024.0, n_mem);}// load weights  加载权重{size_t total_size = 0;bool has_lm_head = false;std::vector<char> read_buf;while (true){int32_t n_dims;int32_t length;int32_t ttype;//读取模型张量维数,名称长度,量化类型fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));fin.read(reinterpret_cast<char *>(&length), sizeof(length));fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));if (fin.eof()){break;}int32_t nelements = 1; //统计张量元素个数int32_t ne[2] = {1, 1};for (int i = 0; i < n_dims; ++i){ //#读取张量所有维度值fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));nelements *= ne[i];}std::string name(length, 0);fin.read(&name[0], length); //读取张量名称// 校验张量名称是否在模型张量表中if (model.tensors.find(name) == model.tensors.end()){fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());return false;}//获取张量auto tensor = model.tensors[name];ggml_set_name(tensor, name.c_str());//校验张量元素个数if (ggml_nelements(tensor) != nelements){fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());return false;}//校验张量2个维度是否匹配if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]){fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",__func__, name.c_str(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]);return false;}// for debuggingif (0){printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));}//校验张量内存占用const size_t bpe = ggml_type_size(ggml_type(ttype));if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)){fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",__func__, name.c_str(), ggml_nbytes(tensor), nelements * bpe);return false;}//读取张量到ggml后端设备内存if (ggml_backend_buffer_is_host(model.buffer_w)){// for some backends such as CPU and Metal, the tensor data is in system memory and we can read directly into itfin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));}else{// read into a temporary buffer first, then copy to device memoryread_buf.resize(ggml_nbytes(tensor));fin.read(read_buf.data(), ggml_nbytes(tensor));ggml_backend_tensor_set(tensor, read_buf.data(), 0, ggml_nbytes(tensor));}// GPT-2 models share the WTE tensor as the LM head// GPT-2模型共享WTE张量作为LM头if (name == "model/wte" && has_lm_head == false){// ggml_backend_tensor_copy(tensor, model.lm_head);model.lm_head = tensor;}if (name == "model/lm_head"){has_lm_head = true;}//统计权重占用设备内存大小total_size += ggml_nbytes(tensor);}printf("%s: model size  = %8.2f MB\n", __func__, total_size / 1024.0 / 1024.0);}fin.close();return true;
}// build the computation graph   创建计算图
struct ggml_cgraph *gpt2_graph(const gpt2_model &model,const int n_past,const int n_tokens)
{const int N = n_tokens;const auto &hparams = model.hparams;const int n_embd = hparams.n_embd;const int n_layer = hparams.n_layer;const int n_ctx = hparams.n_ctx;const int n_head = hparams.n_head;// since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor datastatic size_t buf_size = ggml_tensor_overhead() * GPT2_MAX_NODES + ggml_graph_overhead_custom(GPT2_MAX_NODES, false);static std::vector<uint8_t> buf(buf_size);struct ggml_init_params params = {/*.mem_size   =*/buf_size,/*.mem_buffer =*/buf.data(),/*.no_alloc   =*/true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()};struct ggml_context *ctx = ggml_init(params);struct ggml_cgraph *gf = ggml_new_graph_custom(ctx, GPT2_MAX_NODES, false);struct ggml_tensor *embd = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);// at this point, the tensor data is not allocated yet and cannot be set// we will find the tensor after the graph is allocated by its name, and set the data thenggml_set_name(embd, "embd");// setting a tensor as an input will ensure that it is allocated at the beginning of the graph// this is important to ensure that the input tensors are not overwritten before they are usedggml_set_input(embd);struct ggml_tensor *position = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);ggml_set_name(position, "position");ggml_set_input(position);// wte + wpe  输入张量+ 位置编码struct ggml_tensor *inpL =ggml_add(ctx,ggml_get_rows(ctx, model.wte, embd),ggml_get_rows(ctx, model.wpe, position));//遍历所有层向前计算for (int il = 0; il < n_layer; ++il){struct ggml_tensor *cur;// norm  归一化层计算{// [ 768, N]cur = ggml_norm(ctx, inpL, hparams.eps);// cur = ln_1_g*cur + ln_1_b// [ 768, N]cur = ggml_add(ctx,ggml_mul(ctx,cur,model.layers[il].ln_1_g),model.layers[il].ln_1_b);}// attn// [2304, 768] - model.layers[il].c_attn_attn_w// [2304,   1] - model.layers[il].c_attn_attn_b// [ 768,   N] - cur (in)// [2304,   N] - cur (out)//// cur = attn_w*cur + attn_b// [2304, N]{cur = ggml_mul_mat(ctx,model.layers[il].c_attn_attn_w,cur);cur = ggml_add(ctx,cur,model.layers[il].c_attn_attn_b);}// self-attention  自注意力计算{struct ggml_tensor *Qcur = ggml_view_2d(ctx, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd);struct ggml_tensor *Kcur = ggml_view_2d(ctx, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd);struct ggml_tensor *Vcur = ggml_view_2d(ctx, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd);// store key and value to memory   k,v缓存到ggml后端设备内存if (N >= 1){struct ggml_tensor *k = ggml_view_1d(ctx, model.memory_k, N * n_embd, (ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past));struct ggml_tensor *v = ggml_view_1d(ctx, model.memory_v, N * n_embd, (ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past));ggml_build_forward_expand(gf, ggml_cpy(ctx, Kcur, k));ggml_build_forward_expand(gf, ggml_cpy(ctx, Vcur, v));}// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)// [64, N, 12]struct ggml_tensor *Q =ggml_permute(ctx,ggml_cont_3d(ctx, Qcur, n_embd / n_head, n_head, N),0, 2, 1, 3);// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)// [64, n_past + N, 12]struct ggml_tensor *K =ggml_permute(ctx,ggml_reshape_3d(ctx,ggml_view_1d(ctx, model.memory_k, (n_past + N) * n_embd, il * n_ctx * ggml_element_size(model.memory_k) * n_embd),n_embd / n_head, n_head, n_past + N),0, 2, 1, 3);// GG: flash attention// struct ggml_tensor * V =//    ggml_cpy(ctx0,//            ggml_permute(ctx0,//                ggml_reshape_3d(ctx0,//                    ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),//                    n_embd/n_head, n_head, n_past + N),//                1, 2, 0, 3),//            ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head));// struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);//计算K*Q// K * Q// [n_past + N, N, 12]struct ggml_tensor *KQ = ggml_mul_mat(ctx, K, Q);//计算K*Q缩放// KQ_scaled = KQ / sqrt(n_embd/n_head)// [n_past + N, N, 12]struct ggml_tensor *KQ_scaled =ggml_scale(ctx,KQ,1.0f / sqrtf(float(n_embd) / n_head));//计算KQ掩码// KQ_masked = mask_past(KQ_scaled)// [n_past + N, N, 12]struct ggml_tensor *KQ_masked = ggml_diag_mask_inf(ctx, KQ_scaled, n_past);// softmax计算// KQ = soft_max(KQ_masked)// [n_past + N, N, 12]struct ggml_tensor *KQ_soft_max = ggml_soft_max(ctx, KQ_masked);// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()// [n_past + N, 64, 12]struct ggml_tensor *V_trans =ggml_cont_3d(ctx,ggml_permute(ctx,ggml_reshape_3d(ctx,ggml_view_1d(ctx, model.memory_v, (n_past + N) * n_embd, il * n_ctx * ggml_element_size(model.memory_v) * n_embd),n_embd / n_head, n_head, n_past + N),1, 2, 0, 3),n_past + N, n_embd / n_head, n_head);//值编码矩阵*KQ_soft_max// KQV = transpose(V) * KQ_soft_max// [64, N, 12]struct ggml_tensor *KQV = ggml_mul_mat(ctx, V_trans, KQ_soft_max);// KQV_merged = KQV.permute(0, 2, 1, 3)// [64, 12, N]struct ggml_tensor *KQV_merged = ggml_permute(ctx, KQV, 0, 2, 1, 3);// cur = KQV_merged.contiguous().view(n_embd, N)// [768, N]cur = ggml_cont_2d(ctx, KQV_merged, n_embd, N);}// projection  投影矩阵计算// [ 768, 768] - model.layers[il].c_attn_proj_w// [ 768,   1] - model.layers[il].c_attn_proj_b// [ 768,   N] - cur (in)// [ 768,   N] - cur (out)//// cur = proj_w*cur + proj_b// [768, N]{cur = ggml_mul_mat(ctx,model.layers[il].c_attn_proj_w,cur);cur = ggml_add(ctx,cur,model.layers[il].c_attn_proj_b);}// add the input   残差网络计算cur = ggml_add(ctx, cur, inpL);struct ggml_tensor *inpFF = cur;// feed-forward network  前馈网络{// norm  归一化{cur = ggml_norm(ctx, inpFF, hparams.eps);// cur = ln_2_g*cur + ln_2_b// [ 768, N]cur = ggml_add(ctx,ggml_mul(ctx,cur,model.layers[il].ln_2_g),model.layers[il].ln_2_b);}// fully connected  全连接// [3072, 768] - model.layers[il].c_mlp_fc_w// [3072,   1] - model.layers[il].c_mlp_fc_b// [ 768,   N] - cur (in)// [3072,   N] - cur (out)//// cur = fc_w*cur + fc_b// [3072, N]cur = ggml_mul_mat(ctx,model.layers[il].c_mlp_fc_w,cur);cur = ggml_add(ctx,cur,model.layers[il].c_mlp_fc_b);// GELU activation   激活函数// [3072, N]cur = ggml_gelu(ctx, cur);// projection    投影// [ 768, 3072] - model.layers[il].c_mlp_proj_w// [ 768,    1] - model.layers[il].c_mlp_proj_b// [3072,    N] - cur (in)// [ 768,    N] - cur (out)//// cur = proj_w*cur + proj_b// [768, N]cur = ggml_mul_mat(ctx,model.layers[il].c_mlp_proj_w,cur);cur = ggml_add(ctx,cur,model.layers[il].c_mlp_proj_b);}// input for next layerinpL = ggml_add(ctx, cur, inpFF);}// norm  归一化{// [ 768, N]inpL = ggml_norm(ctx, inpL, hparams.eps);// inpL = ln_f_g*inpL + ln_f_b// [ 768, N]inpL = ggml_add(ctx,ggml_mul(ctx,inpL,model.ln_f_g),model.ln_f_b);}// inpL = WTE * inpL// [ 768, 50257] - model.lm_head// [ 768, N]     - inpLinpL = ggml_mul_mat(ctx, model.lm_head, inpL);ggml_set_name(inpL, "logits");// setting a tensor as the output will ensure that it is not overwritten by subsequent operations// 设置一个张量作为输出将确保它不被后续操作覆盖ggml_set_output(inpL);// logits -> probs// inpL = ggml_soft_max(ctx0, inpL);ggml_build_forward_expand(gf, inpL);//释放ggml后端计算内存ggml_free(ctx);//返回计算图return gf;
}// evaluate the transformer   使用计算图推理
//
//   - model:     the model
//   - allocr:    ggml_gallocr to use to allocate the compute buffer
//   - n_threads: number of threads to use
//   - n_past:    the context size so far
//   - embd_inp:  the embeddings of the tokens in the context
//   - embd_w:    the predicted logits for the next token
//
bool gpt2_eval(const gpt2_model &model,ggml_gallocr_t allocr,const int n_threads,const int n_past,const std::vector<gpt_vocab::id> &embd_inp,std::vector<float> &embd_w)
{//嵌入词汇表维度const int N = embd_inp.size();const auto &hparams = model.hparams;//词汇数量const int n_vocab = hparams.n_vocab;//创建计算图struct ggml_cgraph *gf = gpt2_graph(model, n_past, embd_inp.size());// allocate the graph tensors  分配计算图设备后端内存ggml_gallocr_alloc_graph(allocr, gf);// set the graph inputs  设置计算图输入张量struct ggml_tensor *embd = ggml_graph_get_tensor(gf, "embd");ggml_backend_tensor_set(embd, embd_inp.data(), 0, N * ggml_element_size(embd));//设置位置编码张量struct ggml_tensor *position = ggml_graph_get_tensor(gf, "position");for (int i = 0; i < N; ++i){int32_t v = n_past + i;ggml_backend_tensor_set(position, &v, i * sizeof(int32_t), sizeof(v));}// set backend options 设置后端操作if (ggml_backend_is_cpu(model.backend)){ggml_backend_cpu_set_n_threads(model.backend, n_threads);}#ifdef GGML_USE_METALif (ggml_backend_is_metal(model.backend)){ggml_backend_metal_set_n_cb(model.backend, n_threads);}
#endif// run the computation  运行ggml后端计算图ggml_backend_graph_compute(model.backend, gf);// if (n_past%100 == 0) {//     ggml_graph_print   (&gf);//     ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");// }// get the graph outputs 获取计算图输出struct ggml_tensor *logits = ggml_graph_get_tensor(gf, "logits");// embd_w.resize(n_vocab*N);// ggml_backend_tensor_get(logits, embd_w.data(), 0, sizeof(float)*n_vocab*N);// return result just for the last token// 返回最后一个token作为结果,放在embd_w中embd_w.resize(n_vocab);ggml_backend_tensor_get(logits, embd_w.data(), (n_vocab * (N - 1)) * sizeof(float), sizeof(float) * n_vocab);return true;
}int main(int argc, char **argv)
{ggml_time_init();const int64_t t_main_start_us = ggml_time_us();gpt_params params;params.model = "models/gpt-2-117M/ggml-model.bin";//解析命令行参数if (gpt_params_parse(argc, argv, params) == false){return 1;}//设置随机数种子if (params.seed < 0){params.seed = time(NULL);}printf("%s: seed = %d\n", __func__, params.seed);//随机提示std::mt19937 rng(params.seed);if (params.prompt.empty()){params.prompt = gpt_random_prompt(rng);}int64_t t_load_us = 0;gpt_vocab vocab;gpt2_model model;// load the model  加载模型{const int64_t t_start_us = ggml_time_us();if (!gpt2_model_load(params.model, model, vocab, params.n_ctx, params.n_gpu_layers)){fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());return 1;}t_load_us = ggml_time_us() - t_start_us;test_gpt_tokenizer(vocab, params.token_test);}ggml_gallocr_t allocr = NULL;// allocate the compute buffer  分配计算缓存{// create a graph allocator with the backend's default buffer typeallocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));// create the worst case graph for memory usage estimationint n_tokens = std::min(model.hparams.n_ctx, params.n_batch);int n_past = model.hparams.n_ctx - n_tokens;struct ggml_cgraph *gf = gpt2_graph(model, n_past, n_tokens);// pre-allocate the compute buffer for the worst case (optional)ggml_gallocr_reserve(allocr, gf);size_t mem_size = ggml_gallocr_get_buffer_size(allocr, 0);fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size / 1024.0 / 1024.0);}int n_past = 0;int64_t t_sample_us = 0;int64_t t_predict_us = 0;std::vector<float> logits;// tokenize the prompt 提示分词编码存到向量embd_inp中std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);//根据输入的词汇数目和模型的上下文大小,确定了模型需要预测的标记数量params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int)embd_inp.size());//打印提示词和前8个提示词编码printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str());printf("%s: number of tokens in prompt = %zu, first 8 tokens: ", __func__, embd_inp.size());for (int i = 0; i < std::min(8, (int)embd_inp.size()); i++){printf("%d ", embd_inp[i]);}printf("\n\n");// submit the input prompt token-by-token// this reduces the memory usage during inference, at the cost of a bit of speed at the beginning//逐个输入提示token,这减少了推理过程中的内存使用量,但代价是一开始速度有点慢std::vector<gpt_vocab::id> embd;//模型推理for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++){// predictif (embd.size() > 0){const int64_t t_start_us = ggml_time_us();//使用计算图推理if (!gpt2_eval(model, allocr, params.n_threads, n_past, embd, logits)){printf("Failed to predict\n");return 1;}t_predict_us += ggml_time_us() - t_start_us;}// 当前 上下文大小n_past += embd.size();embd.clear();// 预测位置i大于提示词大小, 采样下一个tokenif (i >= embd_inp.size()){// sample next token  const int top_k = params.top_k;const float top_p = params.top_p;const float temp = params.temp;const int n_vocab = model.hparams.n_vocab;gpt_vocab::id id = 0;{const int64_t t_start_sample_us = ggml_time_us();id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);t_sample_us += ggml_time_us() - t_start_sample_us;}// add it to the context  采样结果添加到上下文embd.push_back(id);}else{//处理输入提示// if here, it means we are still processing the input promptfor (size_t k = i; k < embd_inp.size(); k++){embd.push_back(embd_inp[k]);if (int32_t(embd.size()) >= params.n_batch){break;}}i += embd.size() - 1;}// display text  显示上下文结果for (auto id : embd){printf("%s", vocab.id_to_token[id].c_str());}fflush(stdout);// end of text tokenif (!params.ignore_eos && embd.back() == 50256){break;}}// report timing  打印耗时{const int64_t t_main_end_us = ggml_time_us();printf("\n\n");printf("%s:     load time = %8.2f ms\n", __func__, t_load_us / 1000.0f);printf("%s:   sample time = %8.2f ms\n", __func__, t_sample_us / 1000.0f);printf("%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us / 1000.0f, t_predict_us / 1000.0f / n_past);printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);}//释放资源ggml_free(model.ctx_w);ggml_gallocr_free(allocr);ggml_backend_buffer_free(model.buffer_w);ggml_backend_buffer_free(model.buffer_kv);ggml_backend_free(model.backend);return 0;
}

这篇关于gpt2使用ggml推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999317

相关文章

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

使用TomCat,service输出台出现乱码的解决

《使用TomCat,service输出台出现乱码的解决》本文介绍了解决Tomcat服务输出台中文乱码问题的两种方法,第一种方法是修改`logging.properties`文件中的`prefix`和`... 目录使用TomCat,service输出台出现乱码问题1解决方案问题2解决方案总结使用TomCat,

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

浅析Rust多线程中如何安全的使用变量

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下... 目录1. 向线程传递变量2. 多线程共享变量引用3. 多线程中修改变量4. 总结在Rust语言中,一个既引人入胜又可