SparkCore(15):Shuffle原理和优化

2024-05-24 11:38

本文主要是介绍SparkCore(15):Shuffle原理和优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、总括

Shuffle是进行重新分区的过程,即上游RDD与下游RDD是宽依赖的关系。以下操作可能会引起Shuffle
(1)重新调整分区操作:repartiton,coalesce
(2)*ByKey:groupByKey,reduceByKey
(3)关联操作:join


二、shuffle Manager改进

1-》Spark在1.1以前的版本一直是采用Hash Shuffle的实现的方式
2-》1.1版本时参考Hadoop MapReduce的实现开始引入Sort Shuffle
3-》在1.5版本时开始Tungsten钨丝计划,引入UnSafe Shuffle优化内存及CPU的使用
4-》在1.6中将Tungsten统一到Sort Shuffle中,实现自我感知选择最佳Shuffle方式
http://spark.apache.org/docs/1.6.0/configuration.html

5-》到最近的2.0版本,Hash Shuffle已被删除,所有Shuffle方式全部统一到Sort Shuffle一个实现中。下图是spark shuffle实现的一个版本演进。

三、Shuffle Manager具体分类

1.Spark Shuffle Manager:sort(2.0之后默认)

(1)默认执行过程

-》在该模式下,数据会先写入一个数据结构,reduceByKey 写入 Map,一边通过 Map 局部聚合,一遍写入内存。Join 算子写入 ArrayList 直接写入内存中。然后需要判断是否达到阈值,如果达到就会将内存数据结构的数据写入到磁盘,清空内存数据结构。

-》在溢写磁盘前:先根据 key 进行排序,排序过后的数据,会分批写入到磁盘文件中。默 认批次为 10000 条,数据会以每批一万条写入到磁盘文件。

-》在溢写磁盘过程中:写入磁盘文件通过缓冲区溢写的方式,每次溢写都会产生一个磁盘文件,也就是说一个 Task 过程会产生多个临时文件。

-》最后:在每个 Task 中,将所有的临时文件合并,这就是 merge 过程。此过程将所有临时文件读取出来,一次写入到最终文件。意味着一个 Task 的所有数据都在这一个文件中。同时单独写一份索引文件,标识下游各个Task的数据在文件中的索引,start offset和end offset。

 
(2)bypass SortShuffle

bypass SortShuffle机制触发条件:当task的数量小于200的时候,会自动启动by_pass模式(没有数据排序的操作,就是分区完之后直接写入磁盘)。配置参数:spark.shuffle.sort.bypassMergeThreshold:200(默认是200),执行by_pass过程

此时 task 会为每个 reduce 端的 task 都创建一个临时磁盘文件,并将数据按 key 进行hash 然后根据 key 的 hash 值,将 key 写入对应的磁盘文件之中。当然,写入磁盘文件时也是先写入内存缓冲,缓冲写满之后再溢写到磁盘文件的。最后,同样会将所有临时磁盘文件都合并成一个磁盘文件,并创建一个单独的索引文件。

和hashsort对比:

该过程的磁盘写机制其实跟未经优化的 HashShuffleManager 是一模一样的,因为都要创建数量惊人的磁盘文件,只是在最后会做一个磁盘文件的合并而已。因此少量的最终磁 盘文件,也让该机制相对未经优化的 HashShuffleManager 来说,shuffle read 的性能会更好。
而该机制与普通 SortShuffleManager 运行机制的不同在于:不会进行排序。也就是说,启用该机制的最大好处在于,shuffle write 过程中,不需要进行数据的排序操作,也就节省 掉了这部分的性能开销。

2.Spark Shuffle Manager:hash

这里我们先明确一个假设前提:每个 Executor 只有 1 个 CPU core,也就是说,无论这 个 Executor 上分配多少个 task 线程,同一时间都只能执行一个 task 线程。如果Executor有2个以上Cores,则类似,有部分补充,可以参考:https://www.jianshu.com/p/ef45ca960b5d

(1)使用场景

当应用中的数据不需要进行排序的时候(比如reduceByKey,只要分组就好了,不需要排序),可以直接考虑使用hash 

(2)原始的hash执行过程

3 个 Reducer,从 Task 开始那边各自把自己进行 Hash 计算(分区器:hash/numreduce 取模),分类出 3 个不同的类别,每个 Task 都分成 3 种类别的数据,注意:因为每个executor只有一个core,所以executor中的两个task是先后执行的。想把不同的数据汇聚然后计算出最终的结果,所以 Reducer 会在每个 Task 中把属于自己类别的数据收集过来,汇聚成一个同类别的大集合,每 1 个 Task 输出 3 份本地文件,这里有 4 个Mapper Tasks,所以总共输出了 4 个 Tasks x 3 个分类文件 = 12 个本地小文件。
  
即:最初上游maptask1000,下游reducetask1000,shuffle过程有1000000个小文件。所以,面临的问题:一个task就会有多个缓存,然后会有多个文件写出,当task数据量大,linux文件系统崩溃


(3)优化的hash执行过程:

优化的 HashShuffle 过程就是启用合并机制,合并机制就是复用 buffer,开启合并机制的配置是 spark.shuffle.consolidateFiles。该参数默认值为 false,将其设置为 true 即可开启优化机制。通常来说,如果我们使用 HashShuffleManager,那么都建议开启这个选项。

这里还是有 4 个 Tasks,数据类别还是分成 3 种类型,因为 Hash 算法会根据你的 Key 进行分类,在同一个进程中,无论是有多少过 Task,都会把同样的 Key 放在同一个 Buffer里,然后把 Buffer 中的数据写入以 Core 数量为单位的本地文件中,(一个 Core 只有一种类 型的 Key 的数据),每 1 个 Task 所在的进程中,分别写入共同进程中的 3 份本地文件,这里有 4 个 Mapper Tasks,所以总共输出是 2 个 Cores x 3 个分类文件 = 6 个本地小文件。
 
    

    同一个executor中多个task中的buffer先合并,然后再写出文件。

    优化效果,即为原2个executor,每个2个map task,对应3个reduce task,则总共会有2(executor)*3(reduce task)=6个小文件,而不是2*3*3=18个。
    当使用hash shuffle manager的时候(当分区数比较多的),需要将参数:spark.shuffle.consolidateFiles设置为true,表示开启文件合并功能。见:http://spark.apache.org/docs/1.5.2/configuration.html,在1.6+以后已经没有这个参数,如下图

 

四、Shuffle优化

1. 开启shuffle压缩机制

(1)使用场景:磁盘IO使用很满,则shuffle过程使用压缩,通过cpu资源换取整个应用效率
(2)配置参数:spark.shuffle.compress默认true启动。
 
(3)配置参数:spark.shuffle.spill.compress,如果内存不够用,溢写到磁盘, 

 
(4)默认压缩格式:spark.io.compression.codec,1.6前是snappy,2.0后是lz4.

五、参考

1. Spark Shuffle原理及相关调优
https://blog.csdn.net/u010886217/article/details/83409322

2.Spark Shuffle之Hash Shuffle

https://www.jianshu.com/p/ef45ca960b5d

 

这篇关于SparkCore(15):Shuffle原理和优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998306

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制