SparkCore(11):RDD概念和创建RDD两种方法,以及RDD的Partitions以及并行度理解

本文主要是介绍SparkCore(11):RDD概念和创建RDD两种方法,以及RDD的Partitions以及并行度理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、RDD概念

1.概念

Resilient Distributed Datasets弹性分布式数据集,默认情况下:每一个block对应一个分区,一个分区会开启一个task来处理。

(a)Resilient:可以存在给定不同数目的分区、数据缓存的时候可以缓存一部分数据也可以缓存全部数据
(b)Distributed:分区可以分布到不同的executor执行(也就是不同的worker/NM上执行)
(c)Datasets:内部存储是数据

2.特性

(1)是一系列的分片,分区
(2)每个分片有一个方法来做计算
(3)rdd会有依赖其他rdd的操作,可以通过wordCountRDD.toDebugString来查看
(4)(可选项)如果rdd是二元组,就会存在分区器(默认是hashpartition)
(5)(可选项)最佳位置。数据在哪台机器上,任务就启在哪个机器上,数据在本地上,不用走网络。不过数据进行最后汇总的时候就要走网络。(hdfs file的block块)

二、RDD创建方法

1.外部数据

val path = "hdfs://192.168.31.3:8020/page_views.data"
val originalRdd: RDD[String] = sc.textFile(path)

2.内存中数据:基于序列化进行创建

scala> val seq = List(1,2,3,4,5,6,7)
seq: List[Int] = List(1, 2, 3, 4, 5, 6, 7)scala> val rdd2 = sc.parallelize(seq)
rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at <console>:29

三、关键:Partitions以及并行度

1.RDD的partitions数目

(1)读取数据阶段,对于textFile来说,没有在方法中的指定分区数,则默认为min(defaultParallelism,2),而defaultParallelism对应的就是spark.default.parallelism。如果是从hdfs上面读取文件,其分区数为文件block数(128MB/block)
(2)在Map阶段partition数目保持不变。
(3)在Reduce阶段,RDD的聚合会触发shuffle操作,聚合后的RDD的partition数目跟具体操作有关,例如repartition操作会聚合成指定分区数,还有一些算子是可配置的。

 2.并行度

定义:一个job一次所能执行的task数目,即一个job对应的总的core资源个数

执行一个job的task的并行数 = job的Executor数目 * 每个Executor的core个数。
例如提交scalaProjectMaven.jar的spark任务

date=`date +"%Y%m%d%H%M"`
/opt/modules/spark-2.1.0-bin-2.7.3/bin/spark-submit \
--master yarn \
--deploy-mode client \
--name spark_shell_${date} \
--class wordcount \
--driver-memory   8G \
--driver-cores 4 \    
--executor-memory 4G \
--executor-cores 4 \
--num-executors 3 \
--conf spark.app.coalesce=1 \
/opt/datas/scalaProjectMaven.jar

提交job的并行数=3*4=12,即每一个批次执行12个task,对应12个partitions。

3.partitions和并行度关系

一个partition对应一个要做的task,一个executor的core执行一个task
Tasks(一个RDD的总task数)=该RDD的partitions
Doing(并行执行任务数)= job的Executor数目 * 每个Executor核心数
总共执行批次=Tasks/Doing  (如果不是整除,则加1)

例如:Tasks=50,Doing=30,则执行两次,第一次执行30个task,第二次执行20个task。

4.参考

(1)https://blog.csdn.net/yu0_zhang0/article/details/80454517

 

这篇关于SparkCore(11):RDD概念和创建RDD两种方法,以及RDD的Partitions以及并行度理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998302

相关文章

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

python如何创建等差数列

《python如何创建等差数列》:本文主要介绍python如何创建等差数列的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python创建等差数列例题运行代码回车输出结果总结python创建等差数列import numpy as np x=int(in

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复