SparkCore(11):RDD概念和创建RDD两种方法,以及RDD的Partitions以及并行度理解

本文主要是介绍SparkCore(11):RDD概念和创建RDD两种方法,以及RDD的Partitions以及并行度理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、RDD概念

1.概念

Resilient Distributed Datasets弹性分布式数据集,默认情况下:每一个block对应一个分区,一个分区会开启一个task来处理。

(a)Resilient:可以存在给定不同数目的分区、数据缓存的时候可以缓存一部分数据也可以缓存全部数据
(b)Distributed:分区可以分布到不同的executor执行(也就是不同的worker/NM上执行)
(c)Datasets:内部存储是数据

2.特性

(1)是一系列的分片,分区
(2)每个分片有一个方法来做计算
(3)rdd会有依赖其他rdd的操作,可以通过wordCountRDD.toDebugString来查看
(4)(可选项)如果rdd是二元组,就会存在分区器(默认是hashpartition)
(5)(可选项)最佳位置。数据在哪台机器上,任务就启在哪个机器上,数据在本地上,不用走网络。不过数据进行最后汇总的时候就要走网络。(hdfs file的block块)

二、RDD创建方法

1.外部数据

val path = "hdfs://192.168.31.3:8020/page_views.data"
val originalRdd: RDD[String] = sc.textFile(path)

2.内存中数据:基于序列化进行创建

scala> val seq = List(1,2,3,4,5,6,7)
seq: List[Int] = List(1, 2, 3, 4, 5, 6, 7)scala> val rdd2 = sc.parallelize(seq)
rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at <console>:29

三、关键:Partitions以及并行度

1.RDD的partitions数目

(1)读取数据阶段,对于textFile来说,没有在方法中的指定分区数,则默认为min(defaultParallelism,2),而defaultParallelism对应的就是spark.default.parallelism。如果是从hdfs上面读取文件,其分区数为文件block数(128MB/block)
(2)在Map阶段partition数目保持不变。
(3)在Reduce阶段,RDD的聚合会触发shuffle操作,聚合后的RDD的partition数目跟具体操作有关,例如repartition操作会聚合成指定分区数,还有一些算子是可配置的。

 2.并行度

定义:一个job一次所能执行的task数目,即一个job对应的总的core资源个数

执行一个job的task的并行数 = job的Executor数目 * 每个Executor的core个数。
例如提交scalaProjectMaven.jar的spark任务

date=`date +"%Y%m%d%H%M"`
/opt/modules/spark-2.1.0-bin-2.7.3/bin/spark-submit \
--master yarn \
--deploy-mode client \
--name spark_shell_${date} \
--class wordcount \
--driver-memory   8G \
--driver-cores 4 \    
--executor-memory 4G \
--executor-cores 4 \
--num-executors 3 \
--conf spark.app.coalesce=1 \
/opt/datas/scalaProjectMaven.jar

提交job的并行数=3*4=12,即每一个批次执行12个task,对应12个partitions。

3.partitions和并行度关系

一个partition对应一个要做的task,一个executor的core执行一个task
Tasks(一个RDD的总task数)=该RDD的partitions
Doing(并行执行任务数)= job的Executor数目 * 每个Executor核心数
总共执行批次=Tasks/Doing  (如果不是整除,则加1)

例如:Tasks=50,Doing=30,则执行两次,第一次执行30个task,第二次执行20个task。

4.参考

(1)https://blog.csdn.net/yu0_zhang0/article/details/80454517

 

这篇关于SparkCore(11):RDD概念和创建RDD两种方法,以及RDD的Partitions以及并行度理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998302

相关文章

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::