数字水印 | 图像标准化论文:Digital Watermarking Robust to Geometric Distortions(一)

本文主要是介绍数字水印 | 图像标准化论文:Digital Watermarking Robust to Geometric Distortions(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • II Watermark Based on Image Normalization
      • A 图像的矩和仿射变换
      • B 图像的标准化



🤖原文: Digital Watermarking Robust to Geometric Distortions

🤖前言: 这是一篇 2005 年的 SCI 一区 + CCF-A,但是网上关于它的讲解貌似挺少的。文中提出了两种数字水印方案,但是我只关注第一种方案中的图像标准化技术。由于本人很菜,因此可能存在翻译或者理解的错误,请各位指正!



II Watermark Based on Image Normalization

该水印机制的核心思想是使用一个经过标准化的图像来嵌入和提取水印。

标准化图像 是通过一个几何变换过程得到的,该过程对于任何的图像 仿射变换 都具有不变性。也就是说,即使图像受到了仿射几何攻击,它也会保证水印在标准化图像中的完整性。

这篇博客介绍了仿射变换的基本知识:数字水印 | 仿射变换的原理入门

该水印机制的功能示意图如下图所示:

在这里插入图片描述
如上图所示,提取水印时并不需要原始图像,这使得该方案非常适合于公共水印应用。我们将首先介绍图像的矩和几何仿射变换的一些背景知识,它们是图像标准化的必要工具。



A 图像的矩和仿射变换

f ( x , y ) f(x,y) f(x,y) 表示一个尺寸为 M × N M × N M×N 的数字图像,它的原点矩 m p q m_{pq} mpq 和中心矩 μ p q μ_{pq} μpq 分别被定义为:

m p q = ∑ x = 0 M − 1 ∑ y = 0 N − 1 x p y q f ( x , y ) μ p q = ∑ x = 0 M − 1 ∑ y = 0 N − 1 ( x − x ‾ ) p ( y − y ‾ ) q f ( x , y ) \begin{alignat}{2} m_{pq} =& \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}x^py^qf(x,y) \\ \mu_{pq} =& \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}(x-\overline{x})^p(y-\overline{y})^qf(x,y) \end{alignat}{} mpq=μpq=x=0M1y=0N1xpyqf(x,y)x=0M1y=0N1(xx)p(yy)qf(x,y)

个人理解:这里应该用的是 H U \mathsf{HU} HU 矩。

其中 p , q = 0 , 1 , 2 , . . . p,q=0,1,2,... p,q=0,1,2,... 以及
x ‾ = m 10 m 00 , y ‾ = m 01 m 00 \overline{x}=\frac{m_{10}}{m_{00}},\ \overline{y}=\frac{m_{01}}{m_{00}} x=m00m10, y=m00m01

个人理解: ( x ‾ , y ‾ ) (\overline{x},\overline{y}) (x,y) 是图像重心的坐标。

如果存在矩阵 A = ( a 11 a 12 a 21 a 22 ) \mathbf{A}=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} A=(a11a21a12a22) 和向量 d = ( d 1 d 2 ) \mathbf{d}=\begin{pmatrix} d_{1} \\ d_{2} \end{pmatrix} d=(d1d2) 使得 g ( x , y ) = f ( x a , y a ) g(x,y)=f(x_a,y_a) g(x,y)=f(xa,ya),那么我们认为图像 g ( x , y ) g(x,y) g(x,y) 是图像 f ( x , y ) f(x,y) f(x,y) 的一个仿射变换结果,其中:

( x a y a ) = A ⋅ ( x y ) − d \begin{pmatrix} x_{a} \\ y_{a} \end{pmatrix}=\mathbf{A}\cdot \begin{pmatrix} x \\ y \end{pmatrix} -\mathbf{d} (xaya)=A(xy)d

个人理解:这是仿射变换的一般表达式。不过貌似现在把变换矩阵统一为了一个三维矩阵,而非一个矩阵和一个向量。

具体的仿射变换包括:

  • x x x 方向上的剪切,与之对应的是 A = ( 1 β 0 1 ) = △ A x \mathbf{A}=\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}\overset{\triangle}{=}A_x A=(10β1)=Ax
  • y y y 方向上的剪切,与之对应的是 A = ( 1 0 γ 1 ) = △ A y \mathbf{A}=\begin{pmatrix} 1 & 0 \\ \gamma & 1 \end{pmatrix}\overset{\triangle}{=}A_y A=(1γ01)=Ay
  • 同时在 x x x 方向和 y y y 方向上的剪切,与之对应的是 A = ( α 0 0 δ ) = △ A s \mathbf{A}=\begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix}\overset{\triangle}{=}A_s A=(α00δ)=As

任何仿射变换 A \mathbf{A} A 都可以被分解为上述三个变换的组合:
A = A s ⋅ A y ⋅ A x \mathbf{A}=\mathbf{A}_s\cdot\mathbf{A}_y\cdot\mathbf{A}_x A=AsAyAx
其中要求 a 11 ≠ 0 a_{11}≠0 a11=0 d e t ( A ) ≠ 0 det(\mathbf{A})≠0 det(A)=0。此外,可以根据给定的结果推导出以下结论。

引理 1: 假设图像 g ( x , y ) g(x,y) g(x,y) 是图像 f ( x , y ) f(x,y) f(x,y) 的一个仿射变换结果,其中矩阵 A = ( a 11 a 12 a 21 a 22 ) \mathbf{A}=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} A=(a11a21a12a22) 和向量 d = 0 \mathbf{d}=\mathbf{0} d=0,那么以下等式成立:

m p , q ′ = ∑ i = 0 p ∑ j = 0 q ( p i ) T ( q j ) a 11 i ⋅ a 12 p − i ⋅ a 21 j ⋅ a 22 q − j ⋅ m i + j , p + q − i − j μ p , q ′ = ∑ i = 0 p ∑ j = 0 q ( p i ) T ( q j ) a 11 i ⋅ a 12 p − i ⋅ a 21 j ⋅ a 22 q − j ⋅ μ i + j , p + q − i − j \begin{alignat}{2} m'_{p,q} =& \sum_{i=0}^{p}\sum_{j=0}^{q} \begin{pmatrix} p \\ i \end{pmatrix}^T \begin{pmatrix} q \\ j \end{pmatrix} a^i_{11}\cdot a^{p-i}_{12}\cdot a^{j}_{21}\cdot a^{q-j}_{22}\cdot m_{i+j,p+q-i-j}\\ \mu'_{p,q} =& \sum_{i=0}^{p}\sum_{j=0}^{q} \begin{pmatrix} p \\ i \end{pmatrix}^T \begin{pmatrix} q \\ j \end{pmatrix} a^i_{11}\cdot a^{p-i}_{12}\cdot a^{j}_{21}\cdot a^{q-j}_{22}\cdot \mu_{i+j,p+q-i-j} \end{alignat}{} mp,q=μp,q=i=0pj=0q(pi)T(qj)a11ia12pia21ja22qjmi+j,p+qiji=0pj=0q(pi)T(qj)a11ia12pia21ja22qjμi+j,p+qij

其中, m p q ′ , μ p , q ′ m'_{pq},\mu'_{p,q} mpq,μp,q g ( x , y ) g(x,y) g(x,y) 的矩, m p q , μ p , q m_{pq},\mu_{p,q} mpq,μp,q f ( x , y ) f(x,y) f(x,y) 的矩。

原文的最后一句话是不是写错了符号?我也不认为两个竖着的向量能够相乘,因此擅自加上了转置。



B 图像的标准化

在本节中,我们描述了一个对仿射几何变换具有不变性的标准化过程。在模式识别问题(提取对仿射变换保持不变的图像特征)中,利用矩进行图像标准化的概念是众所周知的。因此我们也对图像应用一个标准化过程,使其满足一组预定义的矩准则。

给定图像 f ( x , y ) f(x,y) f(x,y),标准化过程由以下步骤组成。




步骤一: 对图像 f ( x , y ) f(x,y) f(x,y) 进行中心定位;这是通过设置矩阵 A = ( 1 0 0 1 ) \mathbf{A}=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} A=(1001) 和向量 d = ( d 1 d 2 ) \mathbf{d}=\begin{pmatrix} d_1 \\ d_2 \end{pmatrix} d=(d1d2) 来实现的,其中:
d 1 = m 10 m 00 , d 2 = m 01 m 00 d_1=\frac{m_{10}}{m_{00}},\ d_2=\frac{m_{01}}{m_{00}} d1=m00m10, d2=m00m01
m 10 , m 01 , m 00 m_{10},m_{01},m_{00} m10,m01,m00 是图像 f ( x , y ) f(x,y) f(x,y) 原点矩,令 f 1 ( x , y ) f_1(x,y) f1(x,y) 表示由此得到的中心图像。该步骤是为了实现平移的不变性。

个人理解:平移一个重心的位置。



步骤二: x x x 方向上对图像 f 1 ( x , y ) f_1(x,y) f1(x,y) 进行一个剪切变换,其中矩阵 A x = ( 1 β 0 1 ) \mathbf{A}_x=\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} Ax=(10β1),得到结果图像 f 2 ( x , y ) = △ A x [ f 1 ( x , y ) ] f_2(x,y)\overset{\triangle}{=}\mathbf{A}_x[f_1(x,y)] f2(x,y)=Ax[f1(x,y)],达到: μ 30 ( 2 ) = 0 \mu^{(2)}_{30}=0 μ30(2)=0

注意:上标 ( 2 ) (2) (2) 是用于指明这是 f 2 ( x , y ) f_2(x,y) f2(x,y) 的中心矩。



步骤三: y y y 方向上对图像 f 2 ( x , y ) f_2(x,y) f2(x,y) 进行一个剪切变换,其中矩阵 A y = ( 1 0 γ 1 ) \mathbf{A}_y=\begin{pmatrix} 1 & 0 \\ \gamma & 1 \end{pmatrix} Ay=(1γ01),得到结果图像 f 3 ( x , y ) = △ A y [ f 2 ( x , y ) ] f_3(x,y)\overset{\triangle}{=}\mathbf{A}_y[f_2(x,y)] f3(x,y)=Ay[f2(x,y)],达到: μ 11 ( 3 ) = 0 \mu^{(3)}_{11}=0 μ11(3)=0

我也不知道为什么要让中心矩达到这些标准?



步骤四: 同时在 x x x 方向和 y y y 方向上对图像 f 3 ( x , y ) f_3(x,y) f3(x,y) 进行一个剪切变换,其中矩阵 A s = ( α 0 0 δ ) \mathbf{A}_s=\begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} As=(α00δ),得到结果图像 f 4 ( x , y ) = △ A s [ f 2 ( x , y ) ] f_4(x,y)\overset{\triangle}{=}\mathbf{A}_s[f_2(x,y)] f4(x,y)=As[f2(x,y)],达到:① 规定的标准尺寸;② μ 50 ( 4 ) > 0 \mu^{(4)}_{50}>0 μ50(4)>0 μ 05 ( 4 ) > 0 \mu^{(4)}_{05}>0 μ05(4)>0

最终得到标准化后的图像 f 4 ( x , y ) f_4(x,y) f4(x,y),在此基础上进行后续的水印嵌入和提取。




由前文的介绍可知,一般的仿射变换攻击可以分解为平移、双向剪切、双向缩放的组合,而标准化过程中的 4 4 4 个步骤分别用于消除这些失真成分。

具体来说: 步骤一将标准化图像的中心设置在被仿射变换攻击的图像的密度中心,以消除仿射攻击的平移。步骤二和步骤三消除 x x x y y y 方向上的剪切。步骤四通过将标准化图像强制到标准大小来消除缩放失真。

需要注意的是,标准化过程中的每一步都是可逆的。这允许我们在嵌入水印后,将标准化后的图像还原为原始的大小和方向。当然,我们还需要确定上述过程中变换矩阵 A x , A y , A s \mathbf{A}_x,\mathbf{A}_y,\mathbf{A}_s Ax,Ay,As 中的参数。我们将在下一节中讨论这个问题。在下面的定理中,我们给出了标准化图像对仿射变换的不变性质。

定理 1: 原始图像和它的仿射变换结果具有相同的标准化图像。演示过程如下图所示:

在这里插入图片描述

在上图 (a) 中,我们展示了一幅原始图像 L e n a \mathsf{Lena} Lena。在上图 (b) 中,我们展示了经过仿射变换后的图像。在上图 (c) 中,通过上述标准化过程后,这两幅图像都产生了相同的标准化图像。

原文说该定理的证明过程在附录中,可是我不打算看了😇



这篇关于数字水印 | 图像标准化论文:Digital Watermarking Robust to Geometric Distortions(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997920

相关文章

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需