旅行商问题(TSP)的启发式求解算法

2024-05-16 07:48

本文主要是介绍旅行商问题(TSP)的启发式求解算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、TSP问题

TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。

二、求解算法

从图论的角度来看,TSP问题实质是在一个带权完全无向图中,找一个权值最小的Hamilton回路。由于该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合爆炸,它是一个NP完全问题。
早期的研究者使用精确算法求解该问题,常用的方法包括:分枝定界法、线性规划法、动态规划法等。但是,随着问题规模的增大,精确算法将变得无能为力,因此,在后来的研究中,国内外学者重点使用近似算法或启发式算法,主要有遗传算法、模拟退火法、蚁群算法、禁忌搜索算法、贪婪算法和神经网络等。
下面使用遗传算法模拟退火法蚁群算法禁忌搜索算法贪婪算法 对TSP问题求近似解。
我们使用的TSP问题来自于TSPLIB上的att48,这是一个对称TSP问题,城市规模为48,其最优值为10628.其距离计算方法下所示:
这里写图片描述

首先定义几个通用类,类City表示城市,类CityManager表示旅行商需要拜访的所有城市,类Tour表示旅行商的行走路线。

public class City {int x;    //城市坐标xint y;    //城市坐标ypublic City(int x, int y){this.x = x;this.y = y;}public int getX(){return this.x;}public int getY(){return this.y;}/*** 计算两个城市之间的距离,距离计算方法由上图提供* @param city* @return*/public int distanceTo(City city){int xd = Math.abs(getX() - city.getX());int yd = Math.abs(getY() - city.getY());double rij = Math.sqrt( ( xd*xd + yd*yd ) / 10.0 );int tij = (int)Math.round(rij);if (tij < rij)return tij + 1;elsereturn tij;}@Overridepublic String toString(){return "(" + getX()+ "," + getY() + ")";}
}
import java.util.ArrayList;public class CityManager {//保存所有的目的城市private static ArrayList destinationCities = new ArrayList<City>();public static void addCity(City city) {destinationCities.add(city);}public static City getCity(int index){return (City)destinationCities.get(index);}// 获得城市的数量public static int numberOfCities(){return destinationCities.size();}}
import java.util.ArrayList;
import java.util.Collections;public class Tour{// 访问路线,保存需要访问的城市private ArrayList tour = new ArrayList<City>();// 构建一个空的路线public Tour(){for (int i = 0; i < CityManager.numberOfCities(); i++) {tour.add(null);}}// 用路线tour构建当前路线public Tour(ArrayList tour){this.tour = (ArrayList) tour.clone();}// 返回当前路线信息public ArrayList getTour(){return tour;}// 创建一个城市路线public void generateIndividual() {// 将目的城市一个个添加到当前路线中for (int cityIndex = 0; cityIndex < CityManager.numberOfCities(); cityIndex++) {setCity(cityIndex, CityManager.getCity(cityIndex));}// 把路线上城市的顺序打乱Collections.shuffle(tour);}// 从当前路线中获取指定位置的城市public City getCity(int tourPosition) {return (City)tour.get(tourPosition);}// 将一个目的城市放置到当前路线的指定位置public void setCity(int tourPosition, City city) {tour.set(tourPosition, city);}// 获得当前路线上所有城市距离的总和public int getDistance(){int tourDistance = 0;for (int cityIndex=0; cityIndex < tourSize(); cityIndex++) {City fromCity = getCity(cityIndex);City destinationCity;if(cityIndex+1 < tourSize()){destinationCity = getCity(cityIndex+1);}else{destinationCity = getCity(0);}tourDistance += fromCity.distanceTo(destinationCity);}return tourDistance;}// 获得路线上城市的数量public int tourSize() {return tour.size();}@Overridepublic String toString() {String geneString = "|";for (int i = 0; i < tourSize(); i++) {geneString += getCity(i)+"|";}return geneString;}
}

1. 模拟退火算法

模拟退火算法其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。模拟退火算法是一种随机算法,并不一定能找到全局的最优解,但可以比较快的找到问题的近似最优解。

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;public class SimulatedAnnealing {// Calculate the acceptance probabilitypublic static double acceptanceProbability(int energy, int newEnergy, double temperature) {// If the new solution is better, accept itif (newEnergy < energy) {return 1.0;}// If the new solution is worse, calculate an acceptance probabilityreturn Math.exp((energy - newEnergy) / temperature);}public static void initCities() throws IOException {BufferedReader br = new BufferedReader(new FileReader("att48.tsp"));String line = null;while ( (line = br.readLine()) != null ) {String[] token = line.split(" ");City city = new City(Integer.parseInt(token[1]), Integer.parseInt(token[2]));CityManager.addCity(city);}}public static void main(String[] args) {try {initCities();} catch (IOException e) {// TODO Auto-generated catch blocke.printStackTrace();return;}// Set initial tempdouble temp = 1000;// Cooling ratedouble coolingRate = 0.002;// Initialize intial solutionTour currentSolution = new Tour();currentSolution.generateIndividual();System.out.println("Initial solution distance: " + currentSolution.getDistance());// Set as current bestTour best = new Tour(currentSolution.getTour());// Loop until system has cooledwhile (temp > 1) {// Create new neighbour tourTour newSolution = new Tour(currentSolution.getTour());// Get a random positions in the tourint tourPos1 = (int) (newSolution.tourSize() * Math.random());int tourPos2 = (int) (newSolution.tourSize() * Math.random());while (tourPos1 == tourPos2 ) {tourPos2 = (int) (newSolution.tourSize() * Math.random());}// Get the cities at selected positions in the tourCity citySwap1 = newSolution.getCity(tourPos1);City citySwap2 = newSolution.getCity(tourPos2);// Swap themnewSolution.setCity(tourPos2, citySwap1);newSolution.setCity(tourPos1, citySwap2);// Get energy of solutionsint currentEnergy = currentSolution.getDistance();int neighbourEnergy = newSolution.getDistance();// Decide if we should accept the neighbourif (acceptanceProbability(currentEnergy, neighbourEnergy, temp) > Math.random()) {currentSolution = new Tour(newSolution.getTour());}// Keep track of the best solution foundif (currentSolution.getDistance() < best.getDistance()) {best = new Tour(currentSolution.getTour());}// Cool systemtemp *= 1-coolingRate;}System.out.println("Final solution distance: " + best.getDistance());System.out.println("Tour: " + best);}
}

这篇关于旅行商问题(TSP)的启发式求解算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/994303

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修