OpenCV 图像退化与增强

2024-05-16 01:36
文章标签 图像 opencv 增强 退化

本文主要是介绍OpenCV 图像退化与增强,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

退化

滤波

img_averaging=cv2.blur(img2,(3,3)) #均值滤波
img_median = cv2.medianBlur(img2,3) #中值滤波

高斯模糊

result = cv2.GaussianBlur(source, (11,11), 0)

高斯噪声

def add_noise_Guass(img, mean=0, var=0.01):  # 添加高斯噪声img = np.array(img / 255, dtype=float)# 将原始图像的像素值进行归一化,除以255使得像素值在0-1之间noise = np.random.normal(mean, var ** 0.5, img.shape)#0.01的0.5次幂,ctrl点击normal函数可见参数#给出均值为loc,标准差为scale的高斯随机数(场)'''numpy.random.normal(loc=0.0, scale=1.0, size=None)loc:float此概率分布的均值(对应着整个分布的中心centre)scale:float此概率分布的标准差(对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高)size:int or tuple of ints输出的shape,默认为None,只输出一个值'''out_img = img + noise# 将噪声和原始图像进行相加得到加噪后的图像if out_img.min() < 0:low_clip = -1else:low_clip = 0out_img = np.clip(out_img, low_clip, 1.0)#clip函数将元素的大小限制在了low_clip和1之间了,小于的用low_clip代替,大于1的用1代替out_img = np.uint8(out_img * 255)# 解除归一化,乘以255将加噪后的图像的像素值恢复return out_img

椒盐噪声

def sp_noise(image, amount):output = image.copy()threshold = 1 - amount#传入的参数,设置一个阙值#amount 越大,白色越多for i in range(image.shape[0]):#shape[0]表示图片高for j in range(image.shape[1]):#图片宽rdm = random.random()#取0到1之间的浮点数if rdm < amount: #如果随机数小于参数,那么像素点取黑色output[i][j] = 0  #亮度0%,取黑色elif rdm > threshold:output[i][j] = 255#取白色return output

增强

修复破损

import cv2
import numpy as np
# 读取照片
image = cv2.imread('old_photo.jpg')
# 将图像转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 应用高斯模糊来减少图像噪声
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
# 使用Canny边缘检测器识别边缘
edges = cv2.Canny(blurred, 50, 150)
# 使用膨胀操作将边缘连接在一起形成轮廓
dilated = cv2.dilate(edges, None, iterations=2)
# 在原始图像上绘制轮廓,以便于可视化结果
result = cv2.inpaint(image, dilated, (3, 3), cv2.INPAINT_TELEA)
# 显示修复后的照片
cv2.imshow('Result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()

先读取照片,并将其转换为灰度图。然后,我们使用高斯模糊减少图像噪声,并使用Canny边缘检测器识别边缘。接下来,我们通过膨胀操作将边缘连接在一起形成轮廓,以便识别损坏区域。最后,我们使用OpenCV的inpaint函数来修复损坏区域,并将结果显示出来。

这篇关于OpenCV 图像退化与增强的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993501

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段

Verybot之OpenCV应用三:色标跟踪

下面的这个应用主要完成的是Verybot跟踪色标的功能,识别部分还是居于OpenCV编写,色标跟踪一般需要将图像的颜色模式进行转换,将RGB转换为HSV,因为对HSV格式下的图像进行识别时受光线的影响比较小,但是也有采用RGB模式来进行识别的情况,这种情况一般光线条件比较固定,背景跟识别物在颜色上很容易区分出来。         下面这个程序的流程大致是这样的:

Verybot之OpenCV应用二:霍夫变换查找圆

其实我是想通过这个程序来测试一下,OpenCV在Verybot上跑得怎么样,霍夫变换的原理就不多说了,下面是程序: #include "cv.h"#include "highgui.h"#include "stdio.h"int main(int argc, char** argv){cvNamedWindow("vedio",0);CvCapture* capture;i

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

虚拟机ubuntu配置opencv和opencv_contrib

前期准备  1.下载opencv和opencv_contrib源码 opencv-4.6.0:https://opencv.org/releases/ opencv_contrib-4.6.0:https://github.com/opencv/opencv_contrib 在ubuntu直接下载或者在window上下好传到虚拟机里都可以 自己找个地方把他们解压,个人习惯在home下新建一