OpenCV 图像退化与增强

2024-05-16 01:36
文章标签 图像 opencv 增强 退化

本文主要是介绍OpenCV 图像退化与增强,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

退化

滤波

img_averaging=cv2.blur(img2,(3,3)) #均值滤波
img_median = cv2.medianBlur(img2,3) #中值滤波

高斯模糊

result = cv2.GaussianBlur(source, (11,11), 0)

高斯噪声

def add_noise_Guass(img, mean=0, var=0.01):  # 添加高斯噪声img = np.array(img / 255, dtype=float)# 将原始图像的像素值进行归一化,除以255使得像素值在0-1之间noise = np.random.normal(mean, var ** 0.5, img.shape)#0.01的0.5次幂,ctrl点击normal函数可见参数#给出均值为loc,标准差为scale的高斯随机数(场)'''numpy.random.normal(loc=0.0, scale=1.0, size=None)loc:float此概率分布的均值(对应着整个分布的中心centre)scale:float此概率分布的标准差(对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高)size:int or tuple of ints输出的shape,默认为None,只输出一个值'''out_img = img + noise# 将噪声和原始图像进行相加得到加噪后的图像if out_img.min() < 0:low_clip = -1else:low_clip = 0out_img = np.clip(out_img, low_clip, 1.0)#clip函数将元素的大小限制在了low_clip和1之间了,小于的用low_clip代替,大于1的用1代替out_img = np.uint8(out_img * 255)# 解除归一化,乘以255将加噪后的图像的像素值恢复return out_img

椒盐噪声

def sp_noise(image, amount):output = image.copy()threshold = 1 - amount#传入的参数,设置一个阙值#amount 越大,白色越多for i in range(image.shape[0]):#shape[0]表示图片高for j in range(image.shape[1]):#图片宽rdm = random.random()#取0到1之间的浮点数if rdm < amount: #如果随机数小于参数,那么像素点取黑色output[i][j] = 0  #亮度0%,取黑色elif rdm > threshold:output[i][j] = 255#取白色return output

增强

修复破损

import cv2
import numpy as np
# 读取照片
image = cv2.imread('old_photo.jpg')
# 将图像转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 应用高斯模糊来减少图像噪声
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
# 使用Canny边缘检测器识别边缘
edges = cv2.Canny(blurred, 50, 150)
# 使用膨胀操作将边缘连接在一起形成轮廓
dilated = cv2.dilate(edges, None, iterations=2)
# 在原始图像上绘制轮廓,以便于可视化结果
result = cv2.inpaint(image, dilated, (3, 3), cv2.INPAINT_TELEA)
# 显示修复后的照片
cv2.imshow('Result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()

先读取照片,并将其转换为灰度图。然后,我们使用高斯模糊减少图像噪声,并使用Canny边缘检测器识别边缘。接下来,我们通过膨胀操作将边缘连接在一起形成轮廓,以便识别损坏区域。最后,我们使用OpenCV的inpaint函数来修复损坏区域,并将结果显示出来。

这篇关于OpenCV 图像退化与增强的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993501

相关文章

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存