优雅谈论大模型8:神经网络与矩阵

2024-05-15 09:28

本文主要是介绍优雅谈论大模型8:神经网络与矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

向量与矩阵

上个章节的神经网络是为了解Transformer或者Mamba做好铺垫,在和后辈交流过程中发现有个障碍,那就是向量和矩阵。其实向量和矩阵的表达方式不是所有人都很习惯。在继续下面的章节之前小编认为有必要将向量、矩阵和神经网络做下补充解释。

向量是具有方向和大小的量,用箭头表示。向量具有下面的性质:

有好事者翻出来内积的几何含义,其实就是两个向量的长度乘以它们的夹角,那么上面代数的表达方式和下面的带有cosθ的表达式一样么。是一样的,推导过程略过一千字。

下图则为矩阵运算,请读者快速温习一下。m*n和n*p的矩阵相乘之后一定是m*p维度的。

神经网络的矩阵表示

先来看一个例子,上图一个简单的神经网络,这套变量的标识方式小编比较认可,上标l代表第几层,下面代表某一层的第几个神经元。w的两个下标mn分别代表第m个输出节点和第n个下游节点的权重。一般用z代表没有经过激活函数的数值,而a(ctivation)代表经过激活函数的输出。

上图是层1到层2的计算公式,可以将这样的运算直接转化为矩阵表示。矩阵表达方式十分简洁清爽,而下图中的w矩阵就是传说中的参数,这些矩阵通过样本训练而得到。

于是到了这里,基本上从较为抽象的角度,将基于神经网络的大模型做了简单的抽象。大模型其实就是多层级深度的神经网络,通过不断地累加参数,不断地优化结构,不断地调整样本,让神经网络的信息编码和激活更加的合理和高效。从另一个侧面来看深度学习,其实也是一种复杂的概率转移矩阵。

损失函数

为了评估每个训练之后,真实值和预测值之间的差异,需要一个函数来评估差异化。这个函数有很多种称呼,比如“误差函数”、“损失函数”、“代价函数”等。代价函数是深度学习的重要组成部分,因为它提供了神经网络在给定任务上执行情况的衡量标准。训练深度学习模型的最终目标是最小化损失函数,这意味着模型能够做出更准确的预测并更好地泛化到新数据。

例如在回归问题中采用的MSE来评估代价函数。

假定在某个批次的数据输入,得到预测数据

[7.6, 8.0, 6.8, 8.9, 7.2, 8.3, 7.0, 8.8, 7.0, 7.6]。

而真实的数据为

[7.8, 8.2, 6.5, 9.1, 7.0, 8.5, 6.9, 8.7, 7.2, 7.8]。

两者其实相当的接近。

采用MSE(Mean squared error loss)的评估模式,MSE=(1/n)*Σ(yi - ŷi)^2。yi为正确值,ŷi为预测值,cost = (1/20) * Σ(yi - ŷi)^2 = 0.045

损失函数一方面指导训练过程,用于计算预测输出与真实输出之间的误差。神经网络使用该误差信号来调整其权重和偏差,以减少损失。这个过程称为反向传播,它允许神经网络从错误中学习并在未来做出更好的预测。另一方面它有助于避免过度拟合,当模型的过度拟合则无法泛化到新数据。通过选择合适的损失函数,可以防止过度拟合并确保模型能够很好地泛化到未见过的数据。最后损失函数的选择会对模型的性能产生重大影响。通过使用相同损失函数比较不同模型的性能,可以确定哪个模型对于给定任务最有效。深度学习的不同类型任务则采用不同的损失(评估)函数。下面展示的这些代价函数将会在LLM背后的基础模型专栏中展开详细的讲解。

  • 回归问题一般为均方误差(MSE)、平均绝对误差(MAE)损失、Huber loss和Log-cosh loss。

  • 二元分类问题一般为Binary cross-entropy loss二元交叉熵损失、Hinge loss、Focal loss和Dice loss。

  • 多类分类问题则为分类交叉熵损失、稀疏分类交叉熵损失、Kullback-Leibler (KL)散度损失和Sparsemax loss。

  • 自动编码器问题:均方误差(MSE)损失、二元交叉熵损失和Perceptual loss感知损失。

  • 生成对抗网络损失则一般采用Adversarial loss、L1 or L2 loss、Wasserstein loss和Least squares loss。

  • 物体检测问题对应的有Intersection over Union (IoU) loss、Focal loss、Smooth L1 loss、GIoU loss。

  • Embedding问题则采用Triplet loss、Contrastive loss、Center loss和Angular loss。

这篇关于优雅谈论大模型8:神经网络与矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991439

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +