python图像数据增强——imgaug

2024-05-15 01:08

本文主要是介绍python图像数据增强——imgaug,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://blog.csdn.net/limiyudianzi/article/details/86497305

(一)imgaug基础用法
(二)imgaug进阶示例
(三)imgaug图像分割数据增强

在机器学习或者深度学习的问题中,因为受制于图像采集的方式,投入的精力和图像标注的难度等,用于训练的图像数量可能非常有限。这种情况下,可能出现模型过拟合,训练后的模型泛化能力差等问题,降低模型的实际使用能力,这种现象在医学图像的深度学习中尤其常见。为了在有限的数据下得到更好的分类,检测和分割的结果,往往需要使用数据增强的方式,通过对图像的旋转,加入噪声,仿射变换等方式增加数据量。这里我们就介绍一个python中常见的数据增强库,imgaug

这个包可以直接使用pip进行安装,其安装方法如下

pip3 install git+https://github.com/aleju/imgaug #从github安装
pip3 install Augmentor –user #pip直接安装

    1
    2

该数据增强库也非常容易上手,加入我们已经读取了二维的图像数据,记为images,images应该有四个维度,分别为(N,height,weidth,channels)就是图像数量,图像高度,图像宽度,图像的通道(RGB)。如果是灰度图的话,也必须为四个维度,其中channels为1。数据必须是uint8类型,大小在0到255之间。有了这个准备我们就可以对images中的图像数据进行增强了。

from imgaug import augmenters as iaa #引入数据增强的包

seq = iaa.Sequential([         #建立一个名为seq的实例,定义增强方法,用于增强
    iaa.Crop(px=(0, 16)),     #对图像进行crop操作,随机在距离边缘的0到16像素中选择crop范围
    iaa.Fliplr(0.5),     #对百分之五十的图像进行做左右翻转
    iaa.GaussianBlur((0, 1.0))     #在模型上使用0均值1方差进行高斯模糊
])

images_aug = seq.augment_images(images)    #应用数据增强

    1
    2
    3
    4
    5
    6
    7
    8
    9

在上面的代码中,得到的images_aug就是数据增强之后的结果了,它就可以用来训练我们的深度学习模型或者用于其他。为了更加直观的展示数据增强的结果,我们从官网上截了如下的图像,这就是一只松鼠会被数据增强为如下的样子。
在这里插入图片描述
在下一章中,我们会展示一个基本包含了所有的分类问题数据增强方法的例子,之后如果要使用这个库,就可以直接复制然后删减得到适合自己数据的增强方法。
————————————————
版权声明:本文为CSDN博主「Liu-Kevin」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/limiyudianzi/article/details/86497305

这篇关于python图像数据增强——imgaug的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990375

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常