RT-DETR原创改进|加入SCNet中的SCConv[CVPR2020]自校准卷积模块!

2024-05-14 21:44

本文主要是介绍RT-DETR原创改进|加入SCNet中的SCConv[CVPR2020]自校准卷积模块!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


⭐⭐ RT-DETR改进专栏|包含主干、模块、注意力机制、检测头等前沿创新 ⭐⭐


 一、 论文介绍

        论文链接:http://mftp.mmcheng.net/Papers/20cvprSCNet.pdf

        代码链接:https://gitcode.com/MCG-NKU/SCNet/

 文章摘要:

        CNN的最新进展主要致力于设计更复杂的架构来增强其表示学习能力。在本文中,我们考虑在不调整模型架构的情况下改进CNN的基本卷积特征转换过程。为此,我们提出了一种新的自校准卷积,通过内部通信显式扩展每个卷积层的视场,从而丰富输出特征。特别是,与使用小核(例如3 × 3)融合空间和通道信息的标准卷积不同,我们的自校准卷积通过一种新的自校准操作,自适应地在每个空间位置周围构建远程空间和通道间依赖关系。因此,它可以通过显式地结合更丰富的信息来帮助CNN生成更具判别性的表示。我们的自校准卷积设计简单而通用,可以很容易地应用于增加标准卷积层,而无需引入额外的参数和复杂性。大量的实验表明,当将我们的自校准卷积应用于不同的主干时,基线模型可以在各种视觉任务中得到显着改进,包括图像识别,目标检测,实例分割和关键点检测,而无需改变网络架构。我们希望这项工作可以为未来的研究提供一种有前途的方法来设计新的卷积特征变换,以改进卷积网络。

总结:作者设计了一个即插即用的自校准卷积模块来替代普通的卷积块,称为SC模块(Self-Calibrated Convolutions), 感受野更大,可以关注到更多的上下文信息;使用方便,可以像普通卷积模块一样使用,不需要引入多余参数,适用于多种任务。


二、 加入到RT-DETR中

2.1 复制代码

        复制代码粘到ultralytics->nn->modules->conv.py文件中,在顶部导入torch.nn.functional包,(torch.nn.functional as F),将代码粘贴于下方,并在__all__中声明,如下图所示:

import torch.nn.functional as F__all__ = ("Conv","Conv2","LightConv","DWConv","DWConvTranspose2d","ConvTranspose","Focus","GhostConv","ChannelAttention","SpatialAttention","CBAM","Concat","RepConv","SCConv",
)class SCConv(nn.Module):def __init__(self, inplanes, planes, stride, padding, dilation, groups, pooling_r, norm_layer):super(SCConv, self).__init__()self.k2 = nn.Sequential(nn.AvgPool2d(kernel_size=pooling_r, stride=pooling_r),nn.Conv2d(inplanes, planes, kernel_size=3, stride=1,padding=padding, dilation=dilation,groups=groups, bias=False),eval(norm_layer)(planes),)self.k3 = nn.Sequential(nn.Conv2d(inplanes, planes, kernel_size=3, stride=1,padding=padding, dilation=dilation,groups=groups, bias=False),eval(norm_layer)(planes),)self.k4 = nn.Sequential(nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,padding=padding, dilation=dilation,groups=groups, bias=False),eval(norm_layer)(planes),)def forward(self, x):identity = xout = torch.sigmoid(torch.add(identity, F.interpolate(self.k2(x), identity.size()[2:]))) # sigmoid(identity + k2)out = torch.mul(self.k3(x), out) # k3 * sigmoid(identity + k2)out = self.k4(out) # k4return out

2.2 更改modules.__init__.py文件 

       打开ultralytics->nn->modules->__init__.py,在第64行与81行加入SCConv进行声明。

2.3 更改task.py文件 

        打开ultralytics->nn路径下的tasks.py文件,首先在第51行加入SCConv导入模块,然后在第928行(或其他合适的位置)加入下方代码:

   elif m is SCConv:c2 = args[0]c1 = ch[f]args = [c1, c2, *args[1:]]

 2.4 更改yaml文件 

        创建yaml文件,使用SCConv替换yaml文件中原有的Conv模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]l: [1.00, 1.00, 1024]backbone:# [from, repeats, module, args]- [-1, 1, HGStem, [32, 48]] # 0-P2/4- [-1, 6, HGBlock, [48, 128, 3]] # stage 1- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8- [-1, 6, HGBlock, [96, 512, 3]] # stage 2- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P3/16- [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut- [-1, 6, HGBlock, [192, 1024, 5, True, True]]- [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P4/32- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4head:- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2- [-1, 1, AIFI, [1024, 8]]- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1- [[-2, -1], 1, Concat, [1]]- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0- [-1, 1, SCConv, [256, 1, 1, 1, 1, 4, 'nn.BatchNorm2d']] # 17, Y4, lateral_convs.1- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0- [[-2, -1], 1, Concat, [1]] # cat backbone P4- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0- [[-1, 17], 1, Concat, [1]] # cat Y4- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1- [[-1, 12], 1, Concat, [1]] # cat Y5- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

 2.5 修改train.py文件

        在train.py脚本中填入创建好的yaml路径,运行即可训练。

这篇关于RT-DETR原创改进|加入SCNet中的SCConv[CVPR2020]自校准卷积模块!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989934

相关文章

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Qt spdlog日志模块的使用详解

《Qtspdlog日志模块的使用详解》在Qt应用程序开发中,良好的日志系统至关重要,本文将介绍如何使用spdlog1.5.0创建满足以下要求的日志系统,感兴趣的朋友一起看看吧... 目录版本摘要例子logmanager.cpp文件main.cpp文件版本spdlog版本:1.5.0采用1.5.0版本主要

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

Node.js net模块的使用示例

《Node.jsnet模块的使用示例》本文主要介绍了Node.jsnet模块的使用示例,net模块支持TCP通信,处理TCP连接和数据传输,具有一定的参考价值,感兴趣的可以了解一下... 目录简介引入 net 模块核心概念TCP (传输控制协议)Socket服务器TCP 服务器创建基本服务器服务器配置选项服

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

Window Server2016加入AD域的方法步骤

《WindowServer2016加入AD域的方法步骤》:本文主要介绍WindowServer2016加入AD域的方法步骤,包括配置DNS、检测ping通、更改计算机域、输入账号密码、重启服务... 目录一、 准备条件二、配置ServerB加入ServerA的AD域(test.ly)三、查看加入AD域后的变

多模块的springboot项目发布指定模块的脚本方式

《多模块的springboot项目发布指定模块的脚本方式》该文章主要介绍了如何在多模块的SpringBoot项目中发布指定模块的脚本,作者原先的脚本会清理并编译所有模块,导致发布时间过长,通过简化脚本... 目录多模块的springboot项目发布指定模块的脚本1、不计成本地全部发布2、指定模块发布总结多模

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链