【算法优选】 动态规划之子数组、子串系列——壹

2024-05-14 21:04

本文主要是介绍【算法优选】 动态规划之子数组、子串系列——壹,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 🎋前言
  • 🎋最大子数组和
    • 🚩题目描述
    • 🚩算法思路
    • 🚩代码实现
  • 🌴环形子数组的最大和
    • 🚩题目描述
    • 🚩算法思路:
    • 🚩代码实现
  • 🌲乘积最大子数组
    • 🚩题目描述
    • 🚩算法思路:
    • 🚩代码实现
  • ⭕总结

🎋前言

动态规划相关题目都可以参考以下五个步骤进行解答:

  1. 状态表示

  2. 状态转移⽅程

  3. 初始化

  4. 填表顺序

  5. 返回值

后面题的解答思路也将按照这五个步骤进行讲解。

🎋最大子数组和

🚩题目描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组是数组中的一个连续部分。

  • 示例 1:
    输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
    输出:6
    解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
  • 示例 2:
    输入:nums = [1]
    输出:1
  • 示例 3:
    输入:nums = [5,4,-1,7,8]
    输出:23
class Solution {public int maxSubArray(int[] nums) {}
}

🚩算法思路

  1. 状态表示:

对于线性 dp ,我们可以⽤「经验 + 题⽬要求」来定义状态表示:

  • 以某个位置为结尾,进行一系列操作;
  • 以某个位置为起点,进行一系列操作。

这⾥我们选择比较常用的方式,以「某个位置为结尾」,结合「题目要求」,定义⼀个状态表示:

dp[i] 表⽰:以 i 位置元素为结尾的「所有⼦数组」中和的最⼤和。

  1. 状态转移⽅程:

dp[i] 的所有可能可以分为以下两种:

  • 子数组的长度为 1 :此时 dp[i] = nums[i] ;
  • 子数组的长度⼤大于 1 :此时 dp[i] 应该等于 以 i - 1 做结尾的「所有⼦数组」中和 的最⼤值再加上 nums[i] ,也就是 dp[i - 1] + nums[i] 。

由于我们要的是「最大值」,因此应该是两种情况下的最⼤值,因此可得转移⽅程:

  • dp[i] = max(nums[i], dp[i - 1] + nums[i]) 。
  1. 初始化:

可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:

  • 辅助结点里面的值要「保证后续填表是正确的」;
  • 「下标的映射关系」。

在本题中,最前⾯加上⼀个格⼦,并且让 dp[0] = 0 即可。

  1. 填表顺序

根据「状态转移⽅程」易得,填表顺序为「从左往右」。

  1. 返回值:

状态表示为「以 i 为结尾的所有⼦数组」的最⼤值,但是最大子数组和的结尾我们是不确定的。

因此我们需要返回整个 dp 表中的最⼤值。

🚩代码实现

class Solution {public int maxSubArray(int[] nums) {int[] dp = new int[nums.length + 1];int ret = Integer.MIN_VALUE;for (int  i = 1; i < dp.length; i++) {dp[i] = Math.max(nums[i -1],dp[i - 1] + nums[i - 1]);ret = Math.max(ret,dp[i]);}return ret;}
}

在这里插入图片描述

🌴环形子数组的最大和

🚩题目描述

给定一个长度为 n 的环形整数数组 nums ,返回 nums 的非空 子数组 的最大可能和 。

环形数组 意味着数组的末端将会与开头相连呈环状。形式上, nums[i] 的下一个元素是 nums[(i + 1) % n] , nums[i] 的前一个元素是 nums[(i - 1 + n) % n] 。

子数组 最多只能包含固定缓冲区 nums 中的每个元素一次。形式上,对于子数组 nums[i], nums[i + 1], …, nums[j] ,不存在 i <= k1, k2 <= j 其中 k1 % n == k2 % n 。

  • 示例 1:
    输入:nums = [1,-2,3,-2]
    输出:3
    解释:从子数组 [3] 得到最大和 3
  • 示例 2:
    输入:nums = [5,-3,5]
    输出:10
    解释:从子数组 [5,5] 得到最大和 5 + 5 = 10
  • 示例 3:
    输入:nums = [3,-2,2,-3]
    输出:3
    解释:从子数组 [3] 和 [3,-2,2] 都可以得到最大和 3
class Solution {public int maxSubarraySumCircular(int[] nums) {}
}

🚩算法思路:

本题与「最大子数组和」的区别在于,考虑问题的时候不仅要分析「数组内的连续区域」,还要考虑「数组⾸尾相连」的⼀部分。结果的可能情况分为以下两种:

  1. 结果在数组的内部,包括整个数组;
  2. 结果在数组首尾相连的⼀部分上。

其中,对于第⼀种情况,我们仅需按照「最大子数组和」的求法就可以得到结果,记为 fmax 。

对于第⼆种情况,我们可以分析⼀下:

  • 如果数组⾸尾相连的⼀部分是最⼤的数组和,那么数组中间就会空出来⼀部分;
  • 因为数组的总和 sum 是不变的,那么中间连续的⼀部分的和⼀定是最小的;

因此,我们就可以得出⼀个结论,对于第⼆种情况的最⼤和,应该等于 sum - gmin ,其中gmin 表⽰数组内的「最⼩⼦数组和」。

两种情况下的最⼤值,就是我们要的结果。

但是,由于数组内有可能全部都是负数,第⼀种情况下的结果是数组内的最⼤值(是个负数),第⼆种情况下的 gmin == sum ,求的得结果就会是 0 。

若直接求两者的最⼤值,就会是 0 。但是实际的结果应该是数组内的最⼤值。对于这种情况,我们需要特殊判断⼀下。

由于「最⼤⼦数组和」的⽅法已经讲过,这⾥只提⼀下「最⼩⼦数组和」的求解过程,其实与「最⼤⼦数组和」的求法是⼀致的。⽤ f 表⽰最⼤和, g 表⽰最⼩和。

  1. 状态表示:

g[i] 表⽰:以 i 做结尾的「所有⼦数组」中和的最⼩值。

  1. 状态转移⽅程:

g[i] 的所有可能可以分为以下两种:

  1. ⼦数组的⻓度为 1 :此时 g[i] = nums[i] ;
  2. ⼦数组的⻓度⼤于 1 :此时 g[i] 应该等于 以 i - 1 做结尾的「所有⼦数组」中和的最⼩值再加上 nums[i] ,也就是 g[i - 1] + nums[i] 。

由于我们要的是最⼩⼦数组和,因此应该是两种情况下的最⼩值,因此可得转移⽅程:

  • g[i] = min(nums[i], g[i - 1] + nums[i]) 。
  1. 初始化:
    可以在最前⾯加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:
  • 辅助结点⾥⾯的值要保证后续填表是正确的;

  • 下标的映射关系。

在本题中,最前⾯加上⼀个格⼦,并且让 g[0] = 0 即可。

  1. 填表顺序:

根据状态转移⽅程易得,填表顺序为「从左往右」。

  1. 返回值:
  • 先找到 f 表⾥⾯的最⼤值 -> fmax ;
  • 找到 g 表⾥⾯的最⼩值 -> gmin ;
  • 统计所有元素的和 -> sum ;
  • 返回 sum == gmin ? fmax : max(fmax, sum - gmin)

🚩代码实现

    public int maxSubarraySumCircular(int[] nums) {// 1. 创建 dp 表// 2. 初始化// 3. 填表// 4. 返回值int n = nums.length;int[] f = new int[n + 1];int[] g = new int[n + 1];int sum = 0;int fmax = Integer.MIN_VALUE;int gmin = Integer.MAX_VALUE;for(int i = 1; i <= n; i++) {int x = nums[i - 1];f[i] = Math.max(x, x + f[i - 1]);fmax = Math.max(fmax, f[i]);g[i] = Math.min(x, x + g[i - 1]);gmin = Math.min(gmin, g[i]);sum += x;}return sum == gmin ? fmax : Math.max(fmax, sum - gmin);}

在这里插入图片描述

🌲乘积最大子数组

🚩题目描述

给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续

子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

测试用例的答案是一个 32-位 整数。

  • 示例 1:
    输入: nums = [2,3,-2,4]
    输出: 6
    解释: 子数组 [2,3] 有最大乘积 6。
  • 示例 2:
    输入: nums = [-2,0,-1]
    输出: 0
    解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。
class Solution {public int maxProduct(int[] nums) {}
}

🚩算法思路:

这道题与「最大子数组和] 非常相似,我们可以效仿着定义⼀下状态表⽰以及状态转移:

  • dp[i] 表示以 i 为结尾的所有子数组的最⼤乘积,
  • dp[i] = max(nums[i], dp[i - 1] * nums[i]) ;

由于正负号的存在,我们很容易就可以得到,这样求 dp[i] 的值是不正确的。因为 dp[i - 1] 的信息并不能让我们得到 dp[i] 的正确值。

比如数组 [-2, 5, -2] ,用上述状态转移得到的 dp数组为 [-2, 5, -2] ,最⼤乘积为 5 。但是实际上的最⼤乘积应该是所有数相乘,结果为 20 。

究其原因,就是因为我们在求 dp[2] 的时候,因为 nums[2] 是⼀个负数,因此我们需要的是「 i - 1 位置结尾的最⼩的乘积 (-10) 」,这样⼀个负数乘以「最⼩值」,才会得到真实的最⼤值。

因此,我们不仅需要⼀个「乘积最⼤值的 dp 表」,还需要⼀个「乘积最⼩值的 dp 表」。

  1. 状态表⽰:

f[i] 表⽰:以 i 结尾的所有⼦数组的最⼤乘积,
g[i] 表⽰:以 i 结尾的所有⼦数组的最⼩乘积。

  1. 状态转移⽅程:

遍历每⼀个位置的时候,我们要同步更新两个 dp 数组的值。

对于 f[i] ,也就是「以 i 为结尾的所有⼦数组的最⼤乘积」,对于所有⼦数组,可以分为下⾯三种形式:

  • ⼦数组的⻓度为 1 ,也就是 nums[i] ;
  • ⼦数组的⻓度⼤于 1 ,但 nums[i] > 0 ,此时需要的是 i - 1 为结尾的所有⼦数组的最⼤乘积 f[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * f[i - 1] ;
  • ⼦数组的⻓度⼤于 1 ,但 nums[i] < 0 ,此时需要的是 i - 1 为结尾的所有⼦数组的最⼩乘积 g[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * g[i - 1] ;(如果 nums[i] = 0 ,所有⼦数组的乘积均为 0 ,三种情况其实都包含了)

综上所述, f[i] = max(nums[i], max(nums[i] * f[i - 1], nums[i] * g[i -
1]) )。

对于 g[i] ,也就是「以 i 为结尾的所有⼦数组的最⼩乘积」,对于所有⼦数组,可以分为下⾯三种形式:

  • 子数组的⻓度为 1 ,也就是 nums[i] ;
  • 子数组的⻓度⼤于 1 ,但 nums[i] > 0 ,此时需要的是 i - 1 为结尾的所有子数组的最⼩乘积 g[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * g[i - 1] ;
  • 子数组的长度度⼤于 1 ,但 nums[i] < 0 ,此时需要的是 i - 1 为结尾的所有子数组的最⼤乘积 f[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * f[i - 1] ;

综上所述, g[i] = min(nums[i], min(nums[i] * f[i - 1], nums[i] * g[i - 1])) 。
(如果 nums[i] = 0 ,所有⼦数组的乘积均为 0 ,三种情况其实都包含了)

  1. 初始化:

可以在最前面加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:

  • 辅助结点里面的值要保证后续填表是正确的;
  • 下标的映射关系。

在本题中,最前⾯加上⼀个格⼦,并且让 f[0] = g[0] = 1 即可。

  1. 填表顺序:

根据状态转移⽅程易得,填表顺序为「从左往右,两个表⼀起填」。

  1. 返回值:

返回 f 表中的最⼤值

🚩代码实现

class Solution {public int maxProduct(int[] nums) {// 1. 创建 dp 表// 2. 初始化// 3. 填表// 4. 返回值int n = nums.length;int[] f = new int[n + 1];int[] g = new int[n + 1];f[0] = 1;g[0] = 1;int ret = Integer.MIN_VALUE;for(int i = 1; i <= n; i++) {int x = nums[i - 1];int y = f[i - 1] * nums[i - 1];int z = g[i - 1] * nums[i - 1];f[i] = Math.max(x, Math.max(y, z));g[i] = Math.min(x, Math.min(y, z));ret = Math.max(ret, f[i]);}return ret;}
}

在这里插入图片描述

⭕总结

关于《【算法优选】 动态规划之子数组、子串系列——壹》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

这篇关于【算法优选】 动态规划之子数组、子串系列——壹的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989841

相关文章

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

Java数组初始化的五种方式

《Java数组初始化的五种方式》数组是Java中最基础且常用的数据结构之一,其初始化方式多样且各具特点,本文详细讲解Java数组初始化的五种方式,分析其适用场景、优劣势对比及注意事项,帮助避免常见陷阱... 目录1. 静态初始化:简洁但固定代码示例核心特点适用场景注意事项2. 动态初始化:灵活但需手动管理代

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.