卷积网络项目:实现识别鲜花四分类对比LeNet5、VGG16、ResNet18、ResNet34分类网络

本文主要是介绍卷积网络项目:实现识别鲜花四分类对比LeNet5、VGG16、ResNet18、ResNet34分类网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

卷积四分类项目

Gitee传送门

分类目标选取

鲜花

  • 杏花 apricot_blossom
  • 桃花 peach_blossom
  • 梨花 pear_blossom
  • 梅花 plum_blossom

模型选择

卷积

  • LeNet5
  • VGG16
  • ResNet18
  • ResNet34

以图搜图

获取相似度前10的搜图结果

数据清洗

鲜花四分类

删除非图片文件

image.png

删除重复图片

image.png
image.png
image.png
image.png
image.png

整理数据集

鲜花四分类

每种类别数据:训练500、测试50、预测10
总训练集:2500
总测试集:250
总预测集:40

训练模型

报错

ValueError: num_samples should be a positive integer value, but got num_samples=0

换了电脑后,数据集的存储位置不同,更换路径后解决

RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same

原因:错误内容就在类型不匹配,根据报错内容可以看出Input type为torch.FloatTensor(CPU数据类型),而weight type(即网络权重参数这些)为torch.cuda.FloatTensor(GPU数据类型)
方案:将输入类型转变为GPU类型
输入数据和网络都切换到cuda,但问题仍存在
检查网络,修改模型隐藏层初始化方式后,解决了问题

鲜花

v1:LeNet5:bn

输出4分类

image.png
image.png
image.png

v2:VGG16:bn

数据太差,提前中断了训练
image.png
image.png
image.png

v3:ResNet18:bn

输出4分类
f4_v3:32x32

image.png
image.png
image.png
准确率仍上不去,预估增大迭代次数,准确率能慢慢提升

f4_v3.3:224x224

image.png
image.png
过拟合前最佳:
image.png
测试数据出现过拟合现象,考虑减小数据大小

f4_v3.4:112x112

image.png
image.png
过拟合前最佳:
image.png
再次出现过拟合,提前中断了训练

f4_v3.5:56x56

image.png
image.png
过拟合前最佳:
image.png
再次出现过拟合,提前中断了训练
结论:图片缩放大小无法解决过拟合问题

f4_v3.6:32x32,减4个残差块

image.png
image.png
测试集过拟合前
image.png
最佳
image.png

f4_v3.6:32x32,减4个残差块,transforms减Norm

image.png
image.png
测试集过拟合前
image.png
最佳
image.png

v4:ResNet34:bn

输出4分类

image.png
image.png
image.png
预估:增加迭代次数,可能能缓慢提升准确率

以图搜图

报错

ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1, 512, 1, 1])

image.png
LeNet5模型能正常运行,ResNet18和ResNet34模型报错
image.png正常运行
image.png报错
image.png报错
原因:模型中含有nn.BatchNorm层,训练时需要batch_size大于1,来计算当前batch的running mean and std。自定义数据数量除以batch_size后刚好余1,就发生了上述报错
方案1:在pytorch的Dataloader中设置drop_last=True即可,这样会忽略最后一个batch
尝试在数据集增加drop_last=True,再次训练,尚未解决这个问题
方案2:在添加数据前增加model.eval()
代码原本就有这个语句,仍存在这个问题
方案3:修改训练模型数据预处理中Resize大小32–>224,问题解决

搜图结果

v1:LeNet5:bn

image.png
image.png
没有一个是正确分类

v3:ResNet18:bn

f4_v3:32x32

image.png
image.png
没有一个是正确分类,且相似度差距很大

f4_v3.3:224x224

过拟合前最佳:
image.png
image.png
预测最佳类别中top10图片和原图类别相同,但与top1图片与原图相似度不是0
原因:检索库图片根据特征处理、带参数的模型生成对应的特征文件,更换特征处理方式或参数后,生成的特征文件有所不同,所以计算相似度,哪怕是原图也不为0
解决方案:更换特征处理方式或参数后,重新初始化特征文件,再进行预测,解决了这个问题

v4:ResNet34:bn

f4_v4:32x32

image.png
image.png
没有一个是正确分类,且相似度差距很大

f4_v4.3:224x224

image.png
image.png
出现了一个正确分类,由于时间问题,v4.3版没有完成足够的训练,不确定迭代后的数据能否达到预期效果

特征处理

feat_v3.3.0:tensor

image.png

feat_v3.3.1:tensor+Resize56

image.png

feat_v3.3.2:tensor+Resize56+Norm

image.png

feat_v3.3.3:tensor+crop+Resize56

image.png

feat_v3.3.4:tensor+Resize+crop+Resize56

image.png

feat_v3.3.5:tensor+Resize+crop+Resize224

image.png

feat_v3.3.6:tensor+Resize+crop+Resize112

image.png

feat_v3.3.7:tensor+Resize+crop+Resize32

image.png

总结

feat_v3.3.4.txt版本的特征处理效果最好
特征处理方式:tensor+Resize600+crop400+Resize56

搜图效果

相似度前10的结果,top1是原图,6张正确类别花,3张错误类别花
原因:这四类花本身比较相似,不便于学习;也可能是数据量不够多,训练效果不够好;也可能迭代的次数不够多,模型没有训练到足够好的效果
20240227002214_rec_.gif

这篇关于卷积网络项目:实现识别鲜花四分类对比LeNet5、VGG16、ResNet18、ResNet34分类网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989810

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定