卷积网络项目:实现识别鲜花四分类对比LeNet5、VGG16、ResNet18、ResNet34分类网络

本文主要是介绍卷积网络项目:实现识别鲜花四分类对比LeNet5、VGG16、ResNet18、ResNet34分类网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

卷积四分类项目

Gitee传送门

分类目标选取

鲜花

  • 杏花 apricot_blossom
  • 桃花 peach_blossom
  • 梨花 pear_blossom
  • 梅花 plum_blossom

模型选择

卷积

  • LeNet5
  • VGG16
  • ResNet18
  • ResNet34

以图搜图

获取相似度前10的搜图结果

数据清洗

鲜花四分类

删除非图片文件

image.png

删除重复图片

image.png
image.png
image.png
image.png
image.png

整理数据集

鲜花四分类

每种类别数据:训练500、测试50、预测10
总训练集:2500
总测试集:250
总预测集:40

训练模型

报错

ValueError: num_samples should be a positive integer value, but got num_samples=0

换了电脑后,数据集的存储位置不同,更换路径后解决

RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same

原因:错误内容就在类型不匹配,根据报错内容可以看出Input type为torch.FloatTensor(CPU数据类型),而weight type(即网络权重参数这些)为torch.cuda.FloatTensor(GPU数据类型)
方案:将输入类型转变为GPU类型
输入数据和网络都切换到cuda,但问题仍存在
检查网络,修改模型隐藏层初始化方式后,解决了问题

鲜花

v1:LeNet5:bn

输出4分类

image.png
image.png
image.png

v2:VGG16:bn

数据太差,提前中断了训练
image.png
image.png
image.png

v3:ResNet18:bn

输出4分类
f4_v3:32x32

image.png
image.png
image.png
准确率仍上不去,预估增大迭代次数,准确率能慢慢提升

f4_v3.3:224x224

image.png
image.png
过拟合前最佳:
image.png
测试数据出现过拟合现象,考虑减小数据大小

f4_v3.4:112x112

image.png
image.png
过拟合前最佳:
image.png
再次出现过拟合,提前中断了训练

f4_v3.5:56x56

image.png
image.png
过拟合前最佳:
image.png
再次出现过拟合,提前中断了训练
结论:图片缩放大小无法解决过拟合问题

f4_v3.6:32x32,减4个残差块

image.png
image.png
测试集过拟合前
image.png
最佳
image.png

f4_v3.6:32x32,减4个残差块,transforms减Norm

image.png
image.png
测试集过拟合前
image.png
最佳
image.png

v4:ResNet34:bn

输出4分类

image.png
image.png
image.png
预估:增加迭代次数,可能能缓慢提升准确率

以图搜图

报错

ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1, 512, 1, 1])

image.png
LeNet5模型能正常运行,ResNet18和ResNet34模型报错
image.png正常运行
image.png报错
image.png报错
原因:模型中含有nn.BatchNorm层,训练时需要batch_size大于1,来计算当前batch的running mean and std。自定义数据数量除以batch_size后刚好余1,就发生了上述报错
方案1:在pytorch的Dataloader中设置drop_last=True即可,这样会忽略最后一个batch
尝试在数据集增加drop_last=True,再次训练,尚未解决这个问题
方案2:在添加数据前增加model.eval()
代码原本就有这个语句,仍存在这个问题
方案3:修改训练模型数据预处理中Resize大小32–>224,问题解决

搜图结果

v1:LeNet5:bn

image.png
image.png
没有一个是正确分类

v3:ResNet18:bn

f4_v3:32x32

image.png
image.png
没有一个是正确分类,且相似度差距很大

f4_v3.3:224x224

过拟合前最佳:
image.png
image.png
预测最佳类别中top10图片和原图类别相同,但与top1图片与原图相似度不是0
原因:检索库图片根据特征处理、带参数的模型生成对应的特征文件,更换特征处理方式或参数后,生成的特征文件有所不同,所以计算相似度,哪怕是原图也不为0
解决方案:更换特征处理方式或参数后,重新初始化特征文件,再进行预测,解决了这个问题

v4:ResNet34:bn

f4_v4:32x32

image.png
image.png
没有一个是正确分类,且相似度差距很大

f4_v4.3:224x224

image.png
image.png
出现了一个正确分类,由于时间问题,v4.3版没有完成足够的训练,不确定迭代后的数据能否达到预期效果

特征处理

feat_v3.3.0:tensor

image.png

feat_v3.3.1:tensor+Resize56

image.png

feat_v3.3.2:tensor+Resize56+Norm

image.png

feat_v3.3.3:tensor+crop+Resize56

image.png

feat_v3.3.4:tensor+Resize+crop+Resize56

image.png

feat_v3.3.5:tensor+Resize+crop+Resize224

image.png

feat_v3.3.6:tensor+Resize+crop+Resize112

image.png

feat_v3.3.7:tensor+Resize+crop+Resize32

image.png

总结

feat_v3.3.4.txt版本的特征处理效果最好
特征处理方式:tensor+Resize600+crop400+Resize56

搜图效果

相似度前10的结果,top1是原图,6张正确类别花,3张错误类别花
原因:这四类花本身比较相似,不便于学习;也可能是数据量不够多,训练效果不够好;也可能迭代的次数不够多,模型没有训练到足够好的效果
20240227002214_rec_.gif

这篇关于卷积网络项目:实现识别鲜花四分类对比LeNet5、VGG16、ResNet18、ResNet34分类网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989810

相关文章

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

springboot项目如何开启https服务

《springboot项目如何开启https服务》:本文主要介绍springboot项目如何开启https服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录springboot项目开启https服务1. 生成SSL证书密钥库使用keytool生成自签名证书将

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB