代码随想录训练营Day38、39:Leetcode509、70、746、62、63

2024-05-14 19:36

本文主要是介绍代码随想录训练营Day38、39:Leetcode509、70、746、62、63,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Leetcode509:

问题描述:

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

思路解析:

求第n个斐波那契数:f(n)=f(n-1)+f(n-2),只需要初始化f(0)=1,f(1)=1,后面的第n个数可以通过递推式循环求出

代码及注释:

1.非递归版

class Solution {
public:int fib(int n) {if(n<2)return n;//f(n-1) f(n)int num1=0,num2=1;int temp;for(int i=2;i<=n;i++){temp=num2;num2+=num1;num1=temp;}return num2;}
};

2.递归版

class Solution {
public:int fib(int n) {if(n<2)return n;return fib(n-1)+fib(n-2);}
};

Leetcode70:

问题描述:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

思路解析:

递推式为爬到第n层楼梯:f(n)=f(n-1)+f(n-2)

代码及注释:

class Solution {
public:int climbStairs(int n) {if(n<=2)return n;return climbStairs(n-1)+climbStairs(n-2);}
};

Leetcode746:

问题描述:

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。

思路解析:

分别求出从第0层开始走的最短花费f0(n)与从第1层开始走的最短花费f1(n),return min(f0(n),f1(n));

f0(n)=min(f0[n-1]+cost[n-1],f0[n-2]+cost[n-2]);

代码及注释:

class Solution {
public:int f0[1005];int f1[1005];int minCostClimbingStairs(vector<int>& cost) {int n=cost.size();f0[0]=0;f0[1]=cost[0];f1[1]=0;f1[2]=cost[1];for(int i=2;i<=n;i++){f0[i]=min(f0[i-1]+cost[i-1],f0[i-2]+cost[i-2]);}for(int i=3;i<=n;i++){f1[i]=min(f1[i-1]+cost[i-1],f1[i-2]+cost[i-2]);}return min(f0[n],f1[n]);}
};

Leetcode62:

问题描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

思路解析:

第一行的所有点走法只能有一种,第一列的所有点走法只能有一种,其余点位的走法为

dp[i][j]=dp[i-1][j]+dp[i][j-1](i>1&&j>1)

代码及注释:

class Solution {
public:int dp[105][105];int uniquePaths(int m, int n) {for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){if(i==1||j==1)dp[i][j]=1;elsedp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m][n];}
};

Leetcode63:

问题描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

思路解析:

特殊情况的处理,第一行存在dp[1][j]有障碍物时,后面的dp[1][j+i](i>=0)都为0,无法到达。

第一列也是如此。当dp[i][j](j>1&&i>1)时,该点无法到达,赋值为0;

代码及注释:

class Solution {
public:int dp[105][105];int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int n=obstacleGrid.size();int m=obstacleGrid[0].size();for(int i=0;i<n;i++){for(int j=0;j<m;j++){if(obstacleGrid[i][j]==1){dp[i][j]=0;}else{if(i==0||j==0){if(i==0&&j==0)dp[i][j]=1;else if(i==0)dp[i][j]=dp[i][j-1];else dp[i][j]=dp[i-1][j];}else dp[i][j]=dp[i-1][j]+dp[i][j-1];}}}return dp[n-1][m-1];}
};

这篇关于代码随想录训练营Day38、39:Leetcode509、70、746、62、63的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989659

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

Java实现批量化操作Excel文件的示例代码

《Java实现批量化操作Excel文件的示例代码》在操作Excel的场景中,通常会有一些针对Excel的批量操作,这篇文章主要为大家详细介绍了如何使用GcExcel实现批量化操作Excel,感兴趣的可... 目录前言 | 问题背景什么是GcExcel场景1 批量导入Excel文件,并读取特定区域的数据场景2