本文主要是介绍代码随想录训练营Day38、39:Leetcode509、70、746、62、63,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Leetcode509:
问题描述:
斐波那契数 (通常用 F(n)
表示)形成的序列称为 斐波那契数列 。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n
,请计算 F(n)
。
示例 1:
输入:n = 2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
输入:n = 3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
输入:n = 4 输出:3 解释:F(4) = F(3) + F(2) = 2 + 1 = 3
思路解析:
求第n个斐波那契数:f(n)=f(n-1)+f(n-2),只需要初始化f(0)=1,f(1)=1,后面的第n个数可以通过递推式循环求出
代码及注释:
1.非递归版
class Solution {
public:int fib(int n) {if(n<2)return n;//f(n-1) f(n)int num1=0,num2=1;int temp;for(int i=2;i<=n;i++){temp=num2;num2+=num1;num1=temp;}return num2;}
};
2.递归版
class Solution {
public:int fib(int n) {if(n<2)return n;return fib(n-1)+fib(n-2);}
};
Leetcode70:
问题描述:
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
思路解析:
递推式为爬到第n层楼梯:f(n)=f(n-1)+f(n-2)
代码及注释:
class Solution {
public:int climbStairs(int n) {if(n<=2)return n;return climbStairs(n-1)+climbStairs(n-2);}
};
Leetcode746:
问题描述:
给你一个整数数组 cost
,其中 cost[i]
是从楼梯第 i
个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0
或下标为 1
的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20] 输出:15 解释:你将从下标为 1 的台阶开始。 - 支付 15 ,向上爬两个台阶,到达楼梯顶部。 总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1] 输出:6 解释:你将从下标为 0 的台阶开始。 - 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。 - 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。 - 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。 - 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。 - 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。 - 支付 1 ,向上爬一个台阶,到达楼梯顶部。 总花费为 6 。
思路解析:
分别求出从第0层开始走的最短花费f0(n)与从第1层开始走的最短花费f1(n),return min(f0(n),f1(n));
f0(n)=min(f0[n-1]+cost[n-1],f0[n-2]+cost[n-2]);
代码及注释:
class Solution {
public:int f0[1005];int f1[1005];int minCostClimbingStairs(vector<int>& cost) {int n=cost.size();f0[0]=0;f0[1]=cost[0];f1[1]=0;f1[2]=cost[1];for(int i=2;i<=n;i++){f0[i]=min(f0[i-1]+cost[i-1],f0[i-2]+cost[i-2]);}for(int i=3;i<=n;i++){f1[i]=min(f1[i-1]+cost[i-1],f1[i-2]+cost[i-2]);}return min(f0[n],f1[n]);}
};
Leetcode62:
问题描述:
一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7 输出:28
思路解析:
第一行的所有点走法只能有一种,第一列的所有点走法只能有一种,其余点位的走法为
dp[i][j]=dp[i-1][j]+dp[i][j-1](i>1&&j>1)
代码及注释:
class Solution {
public:int dp[105][105];int uniquePaths(int m, int n) {for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){if(i==1||j==1)dp[i][j]=1;elsedp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m][n];}
};
Leetcode63:
问题描述:
一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1
和 0
来表示。
示例 1:
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
思路解析:
特殊情况的处理,第一行存在dp[1][j]有障碍物时,后面的dp[1][j+i](i>=0)都为0,无法到达。
第一列也是如此。当dp[i][j](j>1&&i>1)时,该点无法到达,赋值为0;
代码及注释:
class Solution {
public:int dp[105][105];int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int n=obstacleGrid.size();int m=obstacleGrid[0].size();for(int i=0;i<n;i++){for(int j=0;j<m;j++){if(obstacleGrid[i][j]==1){dp[i][j]=0;}else{if(i==0||j==0){if(i==0&&j==0)dp[i][j]=1;else if(i==0)dp[i][j]=dp[i][j-1];else dp[i][j]=dp[i-1][j];}else dp[i][j]=dp[i-1][j]+dp[i][j-1];}}}return dp[n-1][m-1];}
};
这篇关于代码随想录训练营Day38、39:Leetcode509、70、746、62、63的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!