动态规划 解TSP旅行商问题

2024-05-14 16:58
文章标签 动态 规划 问题 tsp 旅行

本文主要是介绍动态规划 解TSP旅行商问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文地址: http://blog.csdn.net/gfaiswl/article/details/4749713

1.问题定义

      TSP问题(旅行商问题)是指旅行家要旅行n个城市,要求各个城市经历且仅经历一次然后回到出发城市,并要求所走的路程最短。

      假设现在有四个城市,0,1,2,3,他们之间的代价如图一,可以存成二维表的形式

              image        image

                      图一                                                                                               

        现在要从城市0出发,最后又回到0,期间1,2,3都必须并且只能经过一次,使代价最小。

2.动态规划可行性

        设s, s1, s2, …, sp, s是从s出发的一条路径长度最短的简单回路,假设从s到下一个城市s1已经求出,则问题转化为求从s1到s的最短路径,显然s1, s2, …, sp, s一定构成一条从s1到s的最短路径,所以TSP问题是构成最优子结构性质的,用动态规划来求解也是合理的。

3.推导动态规划方程

        假设从顶点s出发,令d(i, V’)表示从顶点i出发经过V’(是一个点的集合)中各个顶点一次且仅一次,最后回到出发点s的最短路径长度。

        推导:(分情况来讨论)

        ①当V’为空集,那么d(i, V’),表示从i不经过任何点就回到s了,如上图的 城市3->城市0(0为起点城市)。此时d(i, V’)=Cis(就是 城市i 到 城市s 的距离)、

        ②如果V’不为空,那么就是对子问题的最优求解。你必须在V’这个城市集合中,尝试每一个,并求出最优解。

           d(i, V’)=min{Cik +  d(k, V’-{k})}

           注:Cik表示你选择的城市和城市i的距离,d(k, V’-{k})是一个子问题。

        综上所述,TSP问题的动态规划方程就出来了:

         image

4.实例分析

     现在对问题定义中的例子来说明TSP的求解过程。(假设出发城市是 0城市)

     image

    ①我们要求的最终结果是d(0,{1,2,3}),它表示,从城市0开始,经过{1,2,3}之中的城市并且只有一次,求出最短路径.

    ②d(0,{1,2,3})是不能一下子求出来的,那么他的值是怎么得出的呢?看上图的第二层,第二层表明了d(0,{1,2,3})所需依赖的值。那么得出:

       d(0,{1,2,3})=min  {

                                    C01+d(1,{2,3})

                                    C02+d{2,{1,3}}

                                    C03+d{3,{1,2}}

                                  }

     ③d(1,{2,3}),d(2,{1,3}),d(3,{1,2})同样也不是一步就能求出来的,它们的解一样需要有依赖,就比如说d(1,{2,3})

       d(1,{2,3})=min{

                              C12+d(2,{3})                             

                              C13+d(3,{2})

                              }

       d(2,{1,3}),d(3,{1,2})同样需要这么求。

    ④按照上面的思路,只有最后一层的,当当V’为空集时,Cis的值才可以求,它的值是直接从

image

这张表里求得的。

     5.编程思路

        将d(i, V’)转换成二维表,d[i][j]

image

        在程序中模拟填表的过程,主要要考虑到j这个参数的表示,它要代表一个集合,可以用二维数组来表示。

   6.源代码

注:由于本人水平有限,并且主要在这里是体现思路,所以程序并不是很完善,代码质量也不高,很地方可以写得通用一些,所以这里只是提供一个参考,程序的进一步完善,由读者自由发挥。

#include 
#include

int IsIncluded(int x,int array[3])//x是否包含在数组中 

    if((array[0] != x) && (array[1] != x) && (array[2] != x)) 
        return 0; 
    return 1; 

int Left(int k,int array[3],int V[8][3])//实现V'-{k} 的下标检索 

    int i = 0,index = 0,array_0_count = 0,array_1_count = 0,array_2_count = 0,array_3_count = 0; 
    int V_0_count = 0,V_1_count = 0,V_2_count = 0,V_3_count = 0; 
    int temp[3]; 
    for(i = 0; i < 3; i++) 
        temp[i] = array[i]; 
    for(i = 0; i < 3; i++) 
        if(temp[i] == k) 
            temp[i] = 0;  //相当于去掉k这个城市 
    for(i = 0; i < 3; i++) 
    { 
        if(temp[i] == 0) 
            array_0_count++; 
        else if(temp[i] == 1) 
            array_1_count++; 
        else if(temp[i] == 2) 
            array_2_count++; 
        else 
            array_3_count++; 
    } 
    for(index = 0; index < 8; index++) 
    { 
        for(i=0; i < 3; i++) 
        { 
            if(V[index][i] == 0) 
                V_0_count++; 
            else if(V[index][i] == 1) 
                V_1_count++; 
            else if(V[index][i] == 2) 
                V_2_count++; 
            else 
                V_3_count++; 
        } 
        if((array_0_count == V_0_count) && (array_1_count == V_1_count) 
            && (array_2_count == V_2_count) && (array_3_count == V_3_count)) 
            return index; 
        V_0_count = 0; 
        V_1_count = 0; 
        V_2_count = 0; 
        V_3_count = 0; 
    } 
    return 0; 
}

void TSP(int d[4][8],int c[4][4],int V[8][3],int n) 

    int i = 0,j = 0,k = 0;

    for(i = 1; i < n; i++)//V'为空时,给赋值, 
        d[i][0] = c[i][0];

    for(j = 1; j < 7; j++)//按列遍历不同集合,{1},{2},{3},{1,2},{1,3}..... 
    { 
        for(i = 1; i < n; i++)//遍历城市1,2,3 
        { 
            if( !IsIncluded(i,V[j]) )//i必须不在集合中,否则就属于经过两次,不符合题意 
            { 
                for(k = 0; k < 3; k++)//分别试探集合中的每一点,取最小值 
                { 
                    if((V[j][k] != 0) && ((c[i][V[j][k]] + d[V[j][k]][Left(V[j][k],V[j],V)]) < d[i][j])) 
                        d[i][j] = c[i][V[j][k]] + d[V[j][k]][Left(V[j][k],V[j],V)]; 
                } 
            } 
        }//end of     for(i = 1; i < n; i++)//遍历城市1,2,3 
    }//end of for(j = 1; j < ((int)pow(2,n)-1); j++) 
    for(k = 0; k < 3; k++)//分别试探下一步为集合中的任何一点,取最小值 
    { 
        if((V[7][k] != 0) && (c[0][V[7][k]] + d[V[7][k]][Left(V[7][k],V[7],V)]) < d[0][7]) 
            d[0][7] = c[0][V[7][k]] + d[V[7][k]][Left(V[7][k],V[7],V)]; 
    } 

void main() 

    int V[8][3]= 
    { 
        0,0,0, 
        0,0,1, 
        0,0,2, 
        0,0,3, 
        0,1,2, 
        0,1,3, 
        0,2,3, 
        1,2,3 
    }; 
    int c[4][4]= 
    { 
        0,3,6,7, 
        5,0,2,3, 
        6,4,0,2, 
        3,7,5,0 
    }; 
    int d[4][8]={0},i=0,j=0;

    for(i=0; i<4; i++) 
        for(j=0; j<8; j++) 
            d[i][j]=1000;   //假设1000为无穷大 
    TSP(d,c,V,4); 
    printf("The least road is:%d/n",d[0][7]); 
}

这篇关于动态规划 解TSP旅行商问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989313

相关文章

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

解决JavaWeb-file.isDirectory()遇到的坑问题

《解决JavaWeb-file.isDirectory()遇到的坑问题》JavaWeb开发中,使用`file.isDirectory()`判断路径是否为文件夹时,需要特别注意:该方法只能判断已存在的文... 目录Jahttp://www.chinasem.cnvaWeb-file.isDirectory()遇