Lab Checkpoint 3: the TCP sender

2024-05-14 15:36
文章标签 tcp lab checkpoint sender

本文主要是介绍Lab Checkpoint 3: the TCP sender,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码主要逻辑:

  • 发送数据push 函数根据窗口大小和待发送数据的情况,发送数据段(包括处理初始的 SYN、payload 和 FIN)。
  • 接收 ACKreceive 函数处理从接收端接收到的 ACK,更新窗口大小、确认号等,并释放已确认的数据段。
  • 重传逻辑tick 函数处理定时器,检查是否需要重传未确认段,并调整重传超时时间。
  • 处理特殊情况:包括零窗口探测、处理初始 SYN、处理 FIN 段、调整重传超时等。

总的来说,这段代码实现了一个 TCP 协议发送端的核心功能,负责管理数据发送、重传、窗口大小调整等操作,确保数据能够可靠地传输到接收端。

tcp_sender.hh :

#pragma once#include "byte_stream.hh"
#include "tcp_receiver_message.hh"
#include "tcp_sender_message.hh"#include <cstdint>
#include <functional>
#include <list>
#include <memory>
#include <optional>
#include <queue>
#include <map>class TCPSender
{
public:/* 用给定的默认重传超时时间和可能的初始序列号构造TCP发送者 */TCPSender( ByteStream&& input, Wrap32 isn, uint64_t initial_RTO_ms ): input_( std::move( input ) ), isn_( isn ), initial_RTO_ms_( initial_RTO_ms ),raw_RTO_ms(initial_RTO_ms),currentSeqNum_(isn),last_Ack_Seq(isn),window_size_(2),unAckedSegments(){}/* 生成一个空的TCPSenderMessage */TCPSenderMessage make_empty_message() const;/* 接收并处理来自对端接收者的TCPReceiverMessage */void receive( const TCPReceiverMessage& msg );/* 定义`transmit`函数的类型,该函数用于push和tick方法发送消息 */using TransmitFunction = std::function<void( const TCPSenderMessage& )>;/* 从输出流中推送字节 */void push( const TransmitFunction& transmit );/* 自上次调用tick()方法以来,时间已经过去了指定的毫秒数 */void tick( uint64_t ms_since_last_tick, const TransmitFunction& transmit );// 访问器uint64_t sequence_numbers_in_flight() const;  // 当前有多少序列号未确认?uint64_t consecutive_retransmissions() const; // 发生了多少次连续的重传?Writer& writer() { return input_.writer(); }const Writer& writer() const { return input_.writer(); }// 只读访问输入流的读取器(外部不能读取)const Reader& reader() const { return input_.reader(); }private:
// push:// “窗口探测”void handleWindowProbe(const TransmitFunction& transmit);// 处理SYN头bool handleInitialSYN(TCPSenderMessage& message);// 处理分段payloadvoid handlePayload(TCPSenderMessage& message);// 处理分段序列号void handleSqeno(TCPSenderMessage& message); // 处理分段FINbool handleFIN(TCPSenderMessage& message);// 重新设置RTOvoid resetRTO();
// Receive:// 处理返回的ACKvoid processACK(const TCPReceiverMessage& msg);// 处理已经ack数据分段void handle_ack();// Tick://  TCP 使用指数退避策略来调整重传超时时间void handle_RTO();// 构造函数中初始化的变量ByteStream input_; // 输入流Wrap32 isn_;       // 初始序列号uint64_t initial_RTO_ms_;   // 重传超时时间(毫秒)uint64_t raw_RTO_ms;        // 初始重传超时时间(毫秒Wrap32 currentSeqNum_;                    // 当前发送数据分段的序列号  std::optional<Wrap32> last_Ack_Seq;       // 上一个发送数据分段的序列号  uint16_t window_size_;                    // 当前接收方的窗口大小// 记录未确认的分段std::map<uint64_t,TCPSenderMessage> unAckedSegments;bool is_SYN_ACK = false;            // 记录窗口是否確定uint64_t unAckedSegmentsNums = 0;   // 当前待确认的字节数uint64_t checkout = 0;              // 当前已经ack的绝对序列号uint64_t push_checkout = 0;         // 当前已经push的绝对序列号uint64_t since_last_send = 0;       // 记录上次send的时间bool is_RTO_double = false;         // 记录非零窗口是否需要退避RTO(RTO增加)bool isSYNSent_= false;   // 判断是否发送过SYNbool isFINSent_= false;   // 判断是否发送过FIN
};void print(TCPSenderMessage message);

tcp_sender.cc :

#include "tcp_sender.hh"
#include "tcp_config.hh"
#include<iostream>using namespace std;uint64_t TCPSender::sequence_numbers_in_flight() const
{return unAckedSegmentsNums;
}uint64_t TCPSender::consecutive_retransmissions() const
{uint64_t exponent = 0;uint64_t number = initial_RTO_ms_ / raw_RTO_ms;while (number > 1) {number /= 2;exponent++;}return exponent + is_RTO_double;
}TCPSenderMessage TCPSender::make_empty_message() const
{TCPSenderMessage message;message.FIN = false;message.RST = input_.has_error();message.SYN = false;message.payload = "";message.seqno = currentSeqNum_ ;return message;
}void TCPSender::push( const TransmitFunction& transmit )
{uint64_t windowSize = window_size_==0?1:window_size_;// 若ByteStream更新新字节,构造发送信息uint64_t bytes_to_send = input_.reader().bytes_buffered();  // 总共需要发送的字节长度uint64_t payload_len = min({input_.reader().bytes_buffered(), static_cast<uint64_t>(TCPConfig::MAX_PAYLOAD_SIZE), static_cast<uint64_t>(windowSize) - sequence_numbers_in_flight()});TCPSenderMessage message =make_empty_message();// 处理SYN头if(!handleInitialSYN(message)){return;}do{if(static_cast<uint64_t>(windowSize) - sequence_numbers_in_flight() == 0){return ;}if(message.RST){transmit(message);return;}// 处理payloadhandlePayload(message);// 处理FINif(handleFIN(message)){return ;}// 处理序列号handleSqeno(message);unAckedSegments[push_checkout] = message;// 增加未确认的分段数量push_checkout += payload_len;// 更新分段信息bytes_to_send -= payload_len;// 更新is_RTO_double = 0;// 发送信息transmit(message);}while(bytes_to_send >0);
}void TCPSender::receive( const TCPReceiverMessage& msg )
{if (!msg.ackno.has_value()) {if(!msg.window_size){input_.set_error();}return;     }    if(msg.RST){input_.set_error();}// 无效ACK  if(msg.ackno > currentSeqNum_ ){return;}// 重复ACKif(last_Ack_Seq.has_value()){if(last_Ack_Seq >= msg.ackno && window_size_ == msg.window_size){return;}}is_SYN_ACK = true;last_Ack_Seq = msg.ackno.value();// 更新当前确定的接收绝对序列号checkout = msg.ackno.value().unwrap(isn_,checkout);// 释放已经缓冲区已经ack的数据handle_ack();// 更新窗口大小window_size_ = msg.window_size;// 更新待确认的数据个数unAckedSegmentsNums = currentSeqNum_.distance(msg.ackno.value());// 重置RTO翻倍数据resetRTO();return;
}void TCPSender::tick(uint64_t ms_since_last_tick, const TransmitFunction& transmit)
{since_last_send += ms_since_last_tick;// 不会因为连续的零窗口确认而使 RTO 退避(不增加 RTO)。// 这种行为是为了维持连接和测试窗口是否已重新打开,而不是因为网络拥堵。if(window_size_ != 0 ){handle_RTO();}// 检查是否达到初始 RTOif (since_last_send >= initial_RTO_ms_) {since_last_send = 0;is_RTO_double = true;     // 遍历未确认段,并传输每个段if (!unAckedSegments.empty()) {transmit(unAckedSegments.begin()->second);}}
}// 进行“窗口探测”
void TCPSender::handleWindowProbe(const TransmitFunction& transmit) {if (!window_size_) {TCPSenderMessage message = make_empty_message();// 处理payloadhandlePayload(message);// 处理FINif(handleFIN(message)){return ;}// 处理序列号handleSqeno(message);print(message);transmit(message);}}// 处理SYN头
bool TCPSender::handleInitialSYN(TCPSenderMessage& message) {// 流中无字节,且未结束传输if (isSYNSent_ && !input_.reader().bytes_buffered() && !input_.writer().is_closed()) {return false;  }//window_size还未设置,SYN已经设置if(!is_SYN_ACK && isSYNSent_){return false;  }if (!isSYNSent_) {message.SYN = true;isSYNSent_ = true;}return true;
}// 处理分段FIN
bool TCPSender::handleFIN(TCPSenderMessage& message){  if(isFINSent_){return true;}     if (input_.writer().is_closed() &&!input_.reader().bytes_buffered() &&(window_size_ == 0 ? 1 : window_size_) - message.sequence_length() > 0){message.FIN = true;isFINSent_ = true;}return false; 
}// 处理分段payload
void TCPSender::handlePayload(TCPSenderMessage& message){uint64_t payload_len = min({input_.reader().bytes_buffered(), static_cast<uint64_t>(TCPConfig::MAX_PAYLOAD_SIZE), static_cast<uint64_t>(window_size_ == 0?1:window_size_) - sequence_numbers_in_flight()});// 处理分段的payloadmessage.payload = std::string(input_.reader().peek().substr(0, payload_len));input_.reader().pop(payload_len);
}// 处理分段序列号
void TCPSender::handleSqeno(TCPSenderMessage& message){    // 修改当前分段序列号message.seqno = currentSeqNum_;// 分段的序列号currentSeqNum_ = currentSeqNum_ + message.sequence_length();// 待确认的序列号数量unAckedSegmentsNums += message.sequence_length();
}// 重新设置RTO
void TCPSender::resetRTO() {is_RTO_double = false;initial_RTO_ms_ = raw_RTO_ms;since_last_send = 0;
}// 处理返回的ACK
void TCPSender::processACK(const TCPReceiverMessage& msg) {if (!msg.ackno.has_value()) {return;}if (msg.RST) {input_.set_error();}// 无效ACK  if (msg.ackno > currentSeqNum_) {return;}// 重复ACKif (last_Ack_Seq.has_value()) {if (last_Ack_Seq >= msg.ackno && window_size_ == msg.window_size) {return;}}
}// 处理已经ack数据分段
void TCPSender::handle_ack() {auto it = unAckedSegments.begin();while (it != unAckedSegments.end()) {uint64_t seq_no = it->first;uint64_t end_seq_no = seq_no + it->second.sequence_length();if (end_seq_no < checkout) {  it = unAckedSegments.erase(it);} else {++it;}}
}//  调整重传超时时间
void TCPSender::handle_RTO(){if(is_RTO_double){initial_RTO_ms_ *=2;is_RTO_double = false;}
}void print(TCPSenderMessage message){std::cout << "Current Sequence Number: " << message.seqno.getuint32_t() << std::endl;std::cout << "SYN: " << (message.SYN ? "true" : "false") << std::endl;std::cout << "payload: " << message.payload << std::endl;std::cout << "FIN: " << (message.FIN ? "true" : "false") << std::endl;std::cout << "RST: " << (message.RST ? "true" : "false") << std::endl;std::cout << "sequence_length: " << message.sequence_length() << std::endl;}

这篇关于Lab Checkpoint 3: the TCP sender的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989134

相关文章

TCP 可靠传输的工作原理

转载地址:https://my.oschina.net/xinxingegeya/blog/485233 感谢原作者 TCP 可靠传输的工作原理 ARQ(Automatic Repeat-reQuest)(自动重传请求) 停止等待ARQ协议 连续ARQ协议   停止等待ARQ协议 全双工通信的双发既是发送方也是接收方。下面为了讨论问题的方便,我们仅考虑A发送数据而B接受数据

ESP32使用MQTT_TCP连接阿里云

ESP32-IDF中MQTT函数的介绍 esp_mqtt_client_handle_t esp_mqtt_client_init(const esp_mqtt_client_config_t *config) 函数功能:mqtt 客户端初始化 函数形参: mqtt 客户端的配置 函数返回值:正确则返回根据配置创建的 mqtt 客户端句柄;异常则返回 NULL。 其中函数形参 esp_mqtt

【LinuxC语言】第一个简单的tcp/ip客户端

文章目录 前言一、客户端连接服务器的示意图二、客户端涉及的相关函数socket函数connect函数struct sockaddr结构体相关的转换函数connect主体函数 发送数据函数接收数据函数关闭socket客户端示例代码 总结 前言 在计算机网络中,TCP/IP 是最常见的网络协议。它为我们提供了一种可靠的方式来发送和接收数据。在这篇文章中,我们将使用 Linux C

6.S081的Lab学习——Lab8: locks

文章目录 前言一、Memory allocator(moderate)提示:解析 二、Buffer cache(hard)解析: 三、Barrier (moderate)解析: 总结 前言 一个本硕双非的小菜鸡,备战24年秋招。打算尝试6.S081,将它的Lab逐一实现,并记录期间心酸历程。 代码下载 官方网站:6.S081官方网站 安装方式: 通过 APT 安装 (De

TCP与UDP_三次握手_四次挥手

TCP vs UDP TCP数据 具体可以通过Cisco Packet Tracer工具查看: UDP数据 三次握手、四次挥手 为什么是3/4次?这牵扯到单工、双工通信的问题 TCP建立连接:表白 TCP释放连接:分手 TCP—建立连接—三次握手 解释: 首先,启动服务器,让服务器进入监听状态(监听客户端的连接请求)。客户端向服务器发送同

【linuxC语言】第一个简单的TCP/IP服务器

文章目录 前言一、服务器开发结构图二、深度解析服务器三、服务器开发相关函数htonl函数bind函数listen函数accept函数INADDR_ANY 宏struct sockaddr_in的不同场景区别tcp/ip服务器示例代码 总结 前言 在计算机网络中,TCP/IP 是一种非常重要的通信协议。它是互联网的基础,也是许多网络应用的核心。在 Linux 环境下,我们可以使

TCP、HTTP详解

TCP和HTTP   TCP(Transmission Control Protocol,传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议,采用三次握手建立连接,四次挥手终止连接。   TCP连接一旦建立,在通信双方中的任何一方主动关闭连接之前,TCP 连接都将被一直保持下去,服务器和客户端均可主动发起断开连接的请求。   HTTP(Hypertext Transfer Pr

Netty解决TCP粘包/拆包导致的半包读写问题

一.TCP粘包/拆包问题说明   TCP是个“流”协议,就是没有界限的一串数据。TCP底层并不了解上层业务数据的具体含义,它会根据TCP缓冲区的实际情况进行包拆分,所以在业务上认为,一个完整的包可能会被TCP拆分成多个包进行发送,也有可能把多个小的包封装成一个大的数据包发送,这就是所谓的TCP粘包和拆包问题。 二.利用LinedBasedFrameDecoder解决TCP粘包问题    为了

iOS 网络相关面试题(TCP、三次握手、四次挥手、代码实现)

一、TCP的特点和报文结构 1、面向连接、可靠传输、面向字节流、全双工服务 2、TCP的报文结构 TCP报文段由首部字段和一个数据字段组成。 数据字段包含一块应用数据。最大报文长度MSS(Maximum Segment Size)限制了报文段数据字段的最大长度。MSS选项用于在TCP连接建立时,收发双方协商通信时每一个报文段所能承载的最大数据长度。 所以当TCP发送一个大文件(比如一张高清图

用户态协议栈06-TCP三次握手

最近由于准备软件工程师职称考试,然后考完之后不小心生病了,都没写过DPDK的博客了。今天开始在上次架构优化的基础上增加TCP的协议栈流程。 什么是TCP 百度百科:TCP即传输控制协议(Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通讯协议。 这里最需要关注的就是基于字节流,在我们使用Linux的Posix API创建TCP的Sock