利用MMDetection进行模型微调和权重初始化

2024-05-14 14:36

本文主要是介绍利用MMDetection进行模型微调和权重初始化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 模型微调
    • 修改第一处:更少的训练回合Epoch
    • 修改第二处:更小的学习率Learning Rate
    • 修改第三处:使用预训练模型
  • 权重初始化
    • init_cfg 的使用
    • 配置初始化器

本文基于 MMDetection官方文档,对模型微调和权重初始化进行第三方讲解。

在这里插入图片描述

模型微调

在 COCO 数据集上预训练的检测器可以作为其他数据集优质的预训练模型。
微调超参数与默认的训练策略不同。它通常需要更小的学习率和更少的训练回合。根据继承文件_base_的位置找到优化相关配置和训练和测试的配置的文件位置,我选择的Faster R-CNN相关配置文件位于mmdetection/configs/common/ms_3x_coco.py,为了不修改官方已经继承的配置文件,我们可以选择新建一个文件进行,例如mmdetection/configs/common/ms_3x_coco_finetuning.py。在进行下列步骤之前,请确保数据集与配置文件相匹配,并且检测头roi_headnum_classes与数据集类别数相匹配,参考利用MMDetection在自定义数据集上进行训练。

修改第一处:更少的训练回合Epoch

train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=8, val_interval=1)
# max_epochs = 12 → 8

修改第二处:更小的学习率Learning Rate

optim_wrapper = dict(type='OptimWrapper',optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
# lr = 0.002 → 0.001

修改第三处:使用预训练模型

load_from = '/home/miqi/mmdetection/checkpoints/faster_rcnn_r50_fpn_mstrain_3x_coco_20210524_110822-e10bd31c.pth'

权重初始化

在训练过程中,适当的初始化策略有利于加快训练速度或获得更⾼的性能。 MMCV 提供了一些常⽤的初始化模块的⽅法,如 nn.Conv2d。 MMdetection 中的模型初始化主要使⽤ init_cfg

例如在mmdetection/mmdet/models/necks/fpn.py

@MODELS.register_module()
class FPN(BaseModule):def __init__(self,in_channels: List[int],out_channels: int,num_outs: int,start_level: int = 0,end_level: int = -1,add_extra_convs: Union[bool, str] = False,relu_before_extra_convs: bool = False,no_norm_on_lateral: bool = False,conv_cfg: OptConfigType = None,norm_cfg: OptConfigType = None,act_cfg: OptConfigType = None,upsample_cfg: ConfigType = dict(mode='nearest'),init_cfg: MultiConfig = dict(type='Xavier', layer='Conv2d', distribution='uniform')) -> None:super().__init__(init_cfg=init_cfg)

我们可以对init_cfg部分进行修改

init_cfg 的使用

  1. layer 键初始化模型

    如果我们只定义了 layer, 它只会在 layer 键中初始化网络层。

    注意: layer 键对应的值是 Pytorch 的带有 weights 和 bias 属性的类名(因此不⽀持 MultiheadAttention 层)。

  • 定义⽤于初始化具有相同配置的模块的 layer 键。

    init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d', 'Linear'], val=1)
    # ⽤相同的配置初始化整个模块
    
  • 定义⽤于初始化具有不同配置的层的 layer 键。

    init_cfg = [dict(type='Constant', layer='Conv1d', val=1),dict(type='Constant', layer='Conv2d', val=2),dict(type='Constant', layer='Linear', val=3)]
    # nn.Conv1d 将被初始化为 dict(type='Constant', val=1)
    # nn.Conv2d 将被初始化为 dict(type='Constant', val=2)
    # nn.Linear 将被初始化为 dict(type='Constant', val=3)
    
  1. 使⽤ override 键初始化模型
  • 当使⽤属性名初始化某些特定部分时,我们可以使⽤ override 键, override 中的值将忽略 init_cfg 中的值。

    # layers:
    # self.feat = nn.Conv1d(3, 1, 3)
    # self.reg = nn.Conv2d(3, 3, 3)
    # self.cls = nn.Linear(1,2)init_cfg = dict(type='Constant',layer=['Conv1d','Conv2d'], val=1, bias=2,override=dict(type='Constant', name='reg', val=3, bias=4))
    # self.feat and self.cls 将被初始化为 dict(type='Constant', val=1, bias=2)
    # 叫 'reg' 的模块将被初始化为 dict(type='Constant', val=3, bias=4)
    
  • 如果 init_cfg 中的 layer 为 None,则只会初始化 override 中有 name 的⼦模块,⽽ override 中的 type 和其他参数可以省略。

    # layers:
    # self.feat = nn.Conv1d(3, 1, 3)
    # self.reg = nn.Conv2d(3, 3, 3)
    # self.cls = nn.Linear(1,2)init_cfg = dict(type='Constant', val=1, bias=2, 	override=dict(name='reg'))# self.feat and self.cls 将被 Pytorch 初始化
    # 叫 'reg' 的模块将被 dict(type='Constant', val=1, bias=2) 初始化
    
  • 如果我们不定义 layeroverride 键,它不会初始化任何东西。

  • 无效的使用

    # override 没有 name 键的话是无效的
    init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2,override=dict(type='Constant', val=3, bias=4))# override 有 name 键和其他参数但是没有 type 键也是无效的
    init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2,override=dict(name='reg', val=3, bias=4))
    
  1. 使⽤预训练模型初始化模型

    init_cfg = dict(type='Pretrained',checkpoint='torchvision://resnet50')
    

配置初始化器

我们可以通过配置 init_cfg 为模型中任意组件灵活地选择初始化方式。目前我们可以在 init_cfg 中配置以下初始化器:

InitializerRegistered nameFunction
ConstantInitConstant将 weight 和 bias 初始化为指定常量,通常用于初始化卷积
XavierInitXavier将 weight Xavier 方式初始化,将 bias 初始化成指定常量,通常用于初始化卷积
NormalInitNormal将 weight 以正态分布的方式初始化,将 bias 初始化成指定常量,通常用于初始化卷积
TruncNormalInitTruncNormal将 weight 以被截断的正态分布的方式初始化,参数 a 和 b 为正态分布的有效区域;将 bias 初始化成指定常量,通常用于初始化 Transformer
UniformInitUniform将 weight 以均匀分布的方式初始化,参数 a 和 b 为均匀分布的范围;将 bias 初始化为指定常量,通常用于初始化卷积
KaimingInitKaiming将 weight 以 Kaiming 的方式初始化,将 bias 初始化成指定常量,通常用于初始化卷积
Caffe2XavierInitCaffe2XavierCaffe2 中 Xavier 初始化方式,在 Pytorch 中对应 “fan_in”, “normal” 模式的 Kaiming 初始化,,通常用于初始化卷
PretrainedPretrainedInit加载预训练权重

本贴后续会利用Faster R-CNN对预训练权重初始化和常用初始化进行实验,详情教程请见MMEgine权重初始化。

这篇关于利用MMDetection进行模型微调和权重初始化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989009

相关文章

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.