Good Bye 2014 D. New Year Santa Network 树形dp

2024-05-14 11:48

本文主要是介绍Good Bye 2014 D. New Year Santa Network 树形dp,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

D. New Year Santa Network
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

New Year is coming in Tree World! In this world, as the name implies, there are n cities connected by n - 1 roads, and for any two distinct cities there always exists a path between them. The cities are numbered by integers from 1 to n, and the roads are numbered by integers from 1 to n - 1. Let's define d(u, v) as total length of roads on the path between city u and city v.

As an annual event, people in Tree World repairs exactly one road per year. As a result, the length of one road decreases. It is already known that in the i-th year, the length of the ri-th road is going to become wi, which is shorter than its length before. Assume that the current year is year 1.

Three Santas are planning to give presents annually to all the children in Tree World. In order to do that, they need some preparation, so they are going to choose three distinct cities c1c2c3 and make exactly one warehouse in each city. The k-th (1 ≤ k ≤ 3) Santa will take charge of the warehouse in city ck.

It is really boring for the three Santas to keep a warehouse alone. So, they decided to build an only-for-Santa network! The cost needed to build this network equals to d(c1, c2) + d(c2, c3) + d(c3, c1) dollars. Santas are too busy to find the best place, so they decided to choose c1, c2, c3 randomly uniformly over all triples of distinct numbers from 1 to n. Santas would like to know the expected value of the cost needed to build the network.

However, as mentioned, each year, the length of exactly one road decreases. So, the Santas want to calculate the expected after each length change. Help them to calculate the value.

Input

The first line contains an integer n (3 ≤ n ≤ 105) — the number of cities in Tree World.

Next n - 1 lines describe the roads. The i-th line of them (1 ≤ i ≤ n - 1) contains three space-separated integers aibili(1 ≤ ai, bi ≤ nai ≠ bi1 ≤ li ≤ 103), denoting that the i-th road connects cities ai and bi, and the length of i-th road is li.

The next line contains an integer q (1 ≤ q ≤ 105) — the number of road length changes.

Next q lines describe the length changes. The j-th line of them (1 ≤ j ≤ q) contains two space-separated integers rjwj (1 ≤ rj ≤ n - 1,1 ≤ wj ≤ 103). It means that in the j-th repair, the length of the rj-th road becomes wj. It is guaranteed that wj is smaller than the current length of the rj-th road. The same road can be repaired several times.

Output

Output q numbers. For each given change, print a line containing the expected cost needed to build the network in Tree World. The answer will be considered correct if its absolute and relative error doesn't exceed 10 - 6.

Sample test(s)
input
3
2 3 5
1 3 3
5
1 4
2 2
1 2
2 1
1 1
output
14.0000000000
12.0000000000
8.0000000000
6.0000000000
4.0000000000
input
6
1 5 3
5 3 2
6 1 7
1 4 4
5 2 3
5
1 2
2 1
3 5
4 1
5 2
output
19.6000000000
18.6000000000
16.6000000000
13.6000000000
12.6000000000
Note

Consider the first sample. There are 6 triples: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1). Because n = 3, the cost needed to build the network is always d(1, 2) + d(2, 3) + d(3, 1) for all the triples. So, the expected cost equals tod(1, 2) + d(2, 3) + d(3, 1).

题意,给出一棵树,每边条有对应的边树,每次改变一个边的权值,要求随便选三个点,求三个点之间距离权值合的期望。

因为树的结构没有变化,所以可以先用树形dp预处理出每条边对最终结果影响,也就是每条边最终会算多少次,这样可以每次查询的时候只用o(1)复杂度就可以了。

怎么求每条边的个数呢,对任一条连,其左端点的连通块结点个数为x,则其右端点连通块个数为n - x,设为y,则,只要左边选两个点,右边选一个点,或左连选两个点,右边先一个点,这样就有c(x,2) * y + c(y,2) * x个,由于,三角形有两个边,所以还要* 2,化简可以得到sum( x *  (n - x) * (n - 2)};最终,由有n个点,任选3个点,有C(n,3)个三角形,所以还要除以C(n,3),约去(n - 2) ,得到sum{6 * x * (n-x) }/ (n * (n -1));用树形dp,只要o(n +q)的复杂度就可以了。

#define N 100005
#define M 100005
#define maxn 205
#define MOD 1000000000000000007
int n,a,b,c,cnt[N],q;
ll num[N],e[N],ans,mo;
vector<pii> p[N];
bool vis[N];
void DFS(int x){vis[x] = true;cnt[x] = 1;FI(p[x].size()){int t = p[x][i].first;if(!vis[t]){DFS(t);num[p[x][i].second] = 6ll * (ll)cnt[t] * ((ll)n - (ll)cnt[t]);cnt[x] += cnt[t];}}
}
int main()
{//freopen("in.txt", "r", stdin);//freopen("out.txt", "w", stdout);while(S(n)!=EOF){For(i,1,n) p[i].clear();For(i,1,n - 1){S2(a,b);S(c);e[i] = (ll)c;p[a].push_back(mp(b,i));p[b].push_back(mp(a,i));}fill(vis,false);DFS(1);ans = 0;For(i,1,n-1) {ans += num[i] * e[i];}S(q);double factor =  1.0/n/(n-1);while(q--){S2(a,b);ans -= (e[a] - (ll)b) * num[a];e[a] = b;printf("%.6f\n",(double)ans * factor);}}//fclose(stdin);//fclose(stdout);return 0;
}


这篇关于Good Bye 2014 D. New Year Santa Network 树形dp的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988669

相关文章

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

uva 10029 HASH + DP

题意: 给一个字典,里面有好多单词。单词可以由增加、删除、变换,变成另一个单词,问能变换的最长单词长度。 解析: HASH+dp 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1233 n个硬币连续m个正面个数(dp)

题面: Coins Problem Description: Duoxida buys a bottle of MaiDong from a vending machine and the machine give her n coins back. She places them in a line randomly showing head face or tail face o