通过LinkedHashMap缓存图片并实现LRU策略

2024-05-14 11:38

本文主要是介绍通过LinkedHashMap缓存图片并实现LRU策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近看了下通过LinkedHashMap来缓存图片并且实现LRU机制优化内存使用率的内容,所以做下总结!~~

在Android开发过程中,实现图片缓存是一个很重要的问题,如果处理不当很容易引起OOM等问题。很多图片加载框架中都会使用LRU机制来优化内存使用率。今天我们就看下通过LinkedHashMap如何实现LRU机制。

LRU(Least Recently Used)策略,即当内存使用不足时,把最近最少使用的数据从缓存中移除,保留使用最频繁的数据。

这里写图片描述

LinkedHashMap,它继承与HashMap、底层使用哈希表与双向链表来保存所有元素,上图即为一个双向链表。其基本操作与父类HashMap相似,它通过重写父类相关的方法,来实现自己的链接列表特性。在初始化一个LinkedHashMap时可以指定accessOrder值来指定链表的排序策略,当accessOrder为false的时候链表按插入顺序排序,默认为false,当为true的时候按访问顺序排序,什么是按访问顺序排序呢?

public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {super(initialCapacity, loadFactor);init();this.accessOrder = accessOrder;
}

其实按访问顺序排序就是指在调用get方法后,会将这次访问的元素移至链表尾部,不断访问可以形成按访问顺序排序的链表。这部分源码如下

 public V get(Object key) {if (key == null) {HashMapEntry<K, V> e = entryForNullKey;if (e == null)return null;if (accessOrder)makeTail((LinkedEntry<K, V>) e);return e.value;}int hash = Collections.secondaryHash(key);HashMapEntry<K, V>[] tab = table;for (HashMapEntry<K, V> e = tab[hash & (tab.length - 1)];e != null; e = e.next) {K eKey = e.key;if (eKey == key || (e.hash == hash && key.equals(eKey))) {if (accessOrder)makeTail((LinkedEntry<K, V>) e);return e.value;}}return null;}

查看源码我们发现,不管keys是否为空,在accessOrder为true(即按访问顺序排序)后,会先执行makeTail方法,然后再返回元素的Value。我们继续跟到makeTail方法中。

private void makeTail(LinkedEntry<K, V> e) {// Unlink ee.prv.nxt = e.nxt;e.nxt.prv = e.prv;// Relink e as tailLinkedEntry<K, V> header = this.header;LinkedEntry<K, V> oldTail = header.prv;e.nxt = header;e.prv = oldTail;oldTail.nxt = header.prv = e;modCount++;}

观察makeTail的函数体,我们很容易发现这是一个对双向链表中一个元素解绑后与header关联的代码,经过操作后,当前元素会被插入到链表尾部。看到这里,我想大家就明白了为什么通过get方法会使链表按照按访问顺序排序。那当我们put数据的时候又会发生什么呢?通过源码我们发现,当我们put数据的时候,会先跳hashmap的put方法中,这是因为LinkedHashMap并没用重写这个方法而是重写了put方法中所调用的addNewEntry或addNewEntryForNullKey等方法。我们主要看下addNewEntry的函数体。

@Override void addNewEntry(K key, V value, int hash, int index) {LinkedEntry<K, V> header = this.header;LinkedEntry<K, V> eldest = header.nxt;if (eldest != header && removeEldestEntry(eldest)) {remove(eldest.key);}LinkedEntry<K, V> oldTail = header.prv;LinkedEntry<K, V> newTail = new LinkedEntry<K,V>(key, value, hash, table[index], header, oldTail);table[index] = oldTail.nxt = header.prv = newTail;}

addNewEntry方法中首先会获取头指针的下一个元素,并定义为eldest,从字面上理解应该是最老的元素,结合前面get方法的介绍也比较好理解为什么头指针下一个元素会是”最老的“。if中的第一个链表非空的判断比较好理解,然后我们看下removeEldestEntry这个方法

protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {return false;}

默认倩况下返回false的,那什么时候返回true,只有在removeEldestEntry也返回true的时候才会去执行删除“最老”的元素的操作,这样才比较符合我们的逻辑。。。其实目前LRU策略少一个判断,就是什么时候去执行删除最近最少操作的数据,重新看下LRU的概念,当内存不足时进行删除,而这个内存对LinkedHashMap来说其实就是大小,所以我们只需要在初始化LinkedHashMap的时候重写这个方法并且做一个判断,如果当前大小已经大于LinkedHashMap的容量就返回true,从而就会删除最近最少的数据,码如下。

HashMap<String, Bitmap> hardCache = new LinkedHashMap<String, Bitmap>(10, 0.75f, true) {@Overrideprotected boolean removeEldestEntry(Entry<String, Bitmap> entry) {if (this.size() > CAPACITY) {return true;} else {return false;}}
};

到这里LinkedHashMap的LRU策略就实现了。下面我们验证下前面所说的。

HashMap<String, String> map=new LinkedHashMap<String,String>(5, 0.75f, true){protected boolean removeEldestEntry(java.util.Map.Entry<String,String> eldest) {if(this.size()>5){return true;}else{return false;}}};for(int i=0;i<5;i++){map.put("key"+i,"value"+i);}for(String value:map.values()){System.out.println(value);}

输出输出结果为:

value0
value1
value2
value3
value4

下面我们get下map中的数据

       for(int i=0;i<5;i++){map.put("key"+i,"value"+i);}map.get("key"+3);for(String value:map.values()){System.out.println(value);}

输出结果为:

value0
value1
value2
value4
value3

结果和我们上面讲的是一致的。

接下来改下代码再测试下

        for(int i=0;i<5;i++){map.put("key"+i,"value"+i);}map.get("key"+3);map.put("key5","value new add");for(String value:map.values()){System.out.println(value);}

这段代码是向已经满了的LinkedHashMap中继续添加一个元素,根据前所讲,应该会删除第一个元素,即为key0元素被删除,下面看下结果:

value1
value2
value4
value3
value new add

结果与我们前面所讲的一致。

写到这里大家应该对linkedhashmap实现LRU有了一个全面的了解。利用这个机制在缓存图片的时候大大的优化内存使用率,使内存中保留的数据是经常使用的图片。

好了!就写到这里了,欢迎大家留言一起讨论!这是我第一篇博客,以后还是继续努力!~~~~

这篇关于通过LinkedHashMap缓存图片并实现LRU策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988647

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求