通过LinkedHashMap缓存图片并实现LRU策略

2024-05-14 11:38

本文主要是介绍通过LinkedHashMap缓存图片并实现LRU策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近看了下通过LinkedHashMap来缓存图片并且实现LRU机制优化内存使用率的内容,所以做下总结!~~

在Android开发过程中,实现图片缓存是一个很重要的问题,如果处理不当很容易引起OOM等问题。很多图片加载框架中都会使用LRU机制来优化内存使用率。今天我们就看下通过LinkedHashMap如何实现LRU机制。

LRU(Least Recently Used)策略,即当内存使用不足时,把最近最少使用的数据从缓存中移除,保留使用最频繁的数据。

这里写图片描述

LinkedHashMap,它继承与HashMap、底层使用哈希表与双向链表来保存所有元素,上图即为一个双向链表。其基本操作与父类HashMap相似,它通过重写父类相关的方法,来实现自己的链接列表特性。在初始化一个LinkedHashMap时可以指定accessOrder值来指定链表的排序策略,当accessOrder为false的时候链表按插入顺序排序,默认为false,当为true的时候按访问顺序排序,什么是按访问顺序排序呢?

public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {super(initialCapacity, loadFactor);init();this.accessOrder = accessOrder;
}

其实按访问顺序排序就是指在调用get方法后,会将这次访问的元素移至链表尾部,不断访问可以形成按访问顺序排序的链表。这部分源码如下

 public V get(Object key) {if (key == null) {HashMapEntry<K, V> e = entryForNullKey;if (e == null)return null;if (accessOrder)makeTail((LinkedEntry<K, V>) e);return e.value;}int hash = Collections.secondaryHash(key);HashMapEntry<K, V>[] tab = table;for (HashMapEntry<K, V> e = tab[hash & (tab.length - 1)];e != null; e = e.next) {K eKey = e.key;if (eKey == key || (e.hash == hash && key.equals(eKey))) {if (accessOrder)makeTail((LinkedEntry<K, V>) e);return e.value;}}return null;}

查看源码我们发现,不管keys是否为空,在accessOrder为true(即按访问顺序排序)后,会先执行makeTail方法,然后再返回元素的Value。我们继续跟到makeTail方法中。

private void makeTail(LinkedEntry<K, V> e) {// Unlink ee.prv.nxt = e.nxt;e.nxt.prv = e.prv;// Relink e as tailLinkedEntry<K, V> header = this.header;LinkedEntry<K, V> oldTail = header.prv;e.nxt = header;e.prv = oldTail;oldTail.nxt = header.prv = e;modCount++;}

观察makeTail的函数体,我们很容易发现这是一个对双向链表中一个元素解绑后与header关联的代码,经过操作后,当前元素会被插入到链表尾部。看到这里,我想大家就明白了为什么通过get方法会使链表按照按访问顺序排序。那当我们put数据的时候又会发生什么呢?通过源码我们发现,当我们put数据的时候,会先跳hashmap的put方法中,这是因为LinkedHashMap并没用重写这个方法而是重写了put方法中所调用的addNewEntry或addNewEntryForNullKey等方法。我们主要看下addNewEntry的函数体。

@Override void addNewEntry(K key, V value, int hash, int index) {LinkedEntry<K, V> header = this.header;LinkedEntry<K, V> eldest = header.nxt;if (eldest != header && removeEldestEntry(eldest)) {remove(eldest.key);}LinkedEntry<K, V> oldTail = header.prv;LinkedEntry<K, V> newTail = new LinkedEntry<K,V>(key, value, hash, table[index], header, oldTail);table[index] = oldTail.nxt = header.prv = newTail;}

addNewEntry方法中首先会获取头指针的下一个元素,并定义为eldest,从字面上理解应该是最老的元素,结合前面get方法的介绍也比较好理解为什么头指针下一个元素会是”最老的“。if中的第一个链表非空的判断比较好理解,然后我们看下removeEldestEntry这个方法

protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {return false;}

默认倩况下返回false的,那什么时候返回true,只有在removeEldestEntry也返回true的时候才会去执行删除“最老”的元素的操作,这样才比较符合我们的逻辑。。。其实目前LRU策略少一个判断,就是什么时候去执行删除最近最少操作的数据,重新看下LRU的概念,当内存不足时进行删除,而这个内存对LinkedHashMap来说其实就是大小,所以我们只需要在初始化LinkedHashMap的时候重写这个方法并且做一个判断,如果当前大小已经大于LinkedHashMap的容量就返回true,从而就会删除最近最少的数据,码如下。

HashMap<String, Bitmap> hardCache = new LinkedHashMap<String, Bitmap>(10, 0.75f, true) {@Overrideprotected boolean removeEldestEntry(Entry<String, Bitmap> entry) {if (this.size() > CAPACITY) {return true;} else {return false;}}
};

到这里LinkedHashMap的LRU策略就实现了。下面我们验证下前面所说的。

HashMap<String, String> map=new LinkedHashMap<String,String>(5, 0.75f, true){protected boolean removeEldestEntry(java.util.Map.Entry<String,String> eldest) {if(this.size()>5){return true;}else{return false;}}};for(int i=0;i<5;i++){map.put("key"+i,"value"+i);}for(String value:map.values()){System.out.println(value);}

输出输出结果为:

value0
value1
value2
value3
value4

下面我们get下map中的数据

       for(int i=0;i<5;i++){map.put("key"+i,"value"+i);}map.get("key"+3);for(String value:map.values()){System.out.println(value);}

输出结果为:

value0
value1
value2
value4
value3

结果和我们上面讲的是一致的。

接下来改下代码再测试下

        for(int i=0;i<5;i++){map.put("key"+i,"value"+i);}map.get("key"+3);map.put("key5","value new add");for(String value:map.values()){System.out.println(value);}

这段代码是向已经满了的LinkedHashMap中继续添加一个元素,根据前所讲,应该会删除第一个元素,即为key0元素被删除,下面看下结果:

value1
value2
value4
value3
value new add

结果与我们前面所讲的一致。

写到这里大家应该对linkedhashmap实现LRU有了一个全面的了解。利用这个机制在缓存图片的时候大大的优化内存使用率,使内存中保留的数据是经常使用的图片。

好了!就写到这里了,欢迎大家留言一起讨论!这是我第一篇博客,以后还是继续努力!~~~~

这篇关于通过LinkedHashMap缓存图片并实现LRU策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988647

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P