通过LinkedHashMap缓存图片并实现LRU策略

2024-05-14 11:38

本文主要是介绍通过LinkedHashMap缓存图片并实现LRU策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近看了下通过LinkedHashMap来缓存图片并且实现LRU机制优化内存使用率的内容,所以做下总结!~~

在Android开发过程中,实现图片缓存是一个很重要的问题,如果处理不当很容易引起OOM等问题。很多图片加载框架中都会使用LRU机制来优化内存使用率。今天我们就看下通过LinkedHashMap如何实现LRU机制。

LRU(Least Recently Used)策略,即当内存使用不足时,把最近最少使用的数据从缓存中移除,保留使用最频繁的数据。

这里写图片描述

LinkedHashMap,它继承与HashMap、底层使用哈希表与双向链表来保存所有元素,上图即为一个双向链表。其基本操作与父类HashMap相似,它通过重写父类相关的方法,来实现自己的链接列表特性。在初始化一个LinkedHashMap时可以指定accessOrder值来指定链表的排序策略,当accessOrder为false的时候链表按插入顺序排序,默认为false,当为true的时候按访问顺序排序,什么是按访问顺序排序呢?

public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {super(initialCapacity, loadFactor);init();this.accessOrder = accessOrder;
}

其实按访问顺序排序就是指在调用get方法后,会将这次访问的元素移至链表尾部,不断访问可以形成按访问顺序排序的链表。这部分源码如下

 public V get(Object key) {if (key == null) {HashMapEntry<K, V> e = entryForNullKey;if (e == null)return null;if (accessOrder)makeTail((LinkedEntry<K, V>) e);return e.value;}int hash = Collections.secondaryHash(key);HashMapEntry<K, V>[] tab = table;for (HashMapEntry<K, V> e = tab[hash & (tab.length - 1)];e != null; e = e.next) {K eKey = e.key;if (eKey == key || (e.hash == hash && key.equals(eKey))) {if (accessOrder)makeTail((LinkedEntry<K, V>) e);return e.value;}}return null;}

查看源码我们发现,不管keys是否为空,在accessOrder为true(即按访问顺序排序)后,会先执行makeTail方法,然后再返回元素的Value。我们继续跟到makeTail方法中。

private void makeTail(LinkedEntry<K, V> e) {// Unlink ee.prv.nxt = e.nxt;e.nxt.prv = e.prv;// Relink e as tailLinkedEntry<K, V> header = this.header;LinkedEntry<K, V> oldTail = header.prv;e.nxt = header;e.prv = oldTail;oldTail.nxt = header.prv = e;modCount++;}

观察makeTail的函数体,我们很容易发现这是一个对双向链表中一个元素解绑后与header关联的代码,经过操作后,当前元素会被插入到链表尾部。看到这里,我想大家就明白了为什么通过get方法会使链表按照按访问顺序排序。那当我们put数据的时候又会发生什么呢?通过源码我们发现,当我们put数据的时候,会先跳hashmap的put方法中,这是因为LinkedHashMap并没用重写这个方法而是重写了put方法中所调用的addNewEntry或addNewEntryForNullKey等方法。我们主要看下addNewEntry的函数体。

@Override void addNewEntry(K key, V value, int hash, int index) {LinkedEntry<K, V> header = this.header;LinkedEntry<K, V> eldest = header.nxt;if (eldest != header && removeEldestEntry(eldest)) {remove(eldest.key);}LinkedEntry<K, V> oldTail = header.prv;LinkedEntry<K, V> newTail = new LinkedEntry<K,V>(key, value, hash, table[index], header, oldTail);table[index] = oldTail.nxt = header.prv = newTail;}

addNewEntry方法中首先会获取头指针的下一个元素,并定义为eldest,从字面上理解应该是最老的元素,结合前面get方法的介绍也比较好理解为什么头指针下一个元素会是”最老的“。if中的第一个链表非空的判断比较好理解,然后我们看下removeEldestEntry这个方法

protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {return false;}

默认倩况下返回false的,那什么时候返回true,只有在removeEldestEntry也返回true的时候才会去执行删除“最老”的元素的操作,这样才比较符合我们的逻辑。。。其实目前LRU策略少一个判断,就是什么时候去执行删除最近最少操作的数据,重新看下LRU的概念,当内存不足时进行删除,而这个内存对LinkedHashMap来说其实就是大小,所以我们只需要在初始化LinkedHashMap的时候重写这个方法并且做一个判断,如果当前大小已经大于LinkedHashMap的容量就返回true,从而就会删除最近最少的数据,码如下。

HashMap<String, Bitmap> hardCache = new LinkedHashMap<String, Bitmap>(10, 0.75f, true) {@Overrideprotected boolean removeEldestEntry(Entry<String, Bitmap> entry) {if (this.size() > CAPACITY) {return true;} else {return false;}}
};

到这里LinkedHashMap的LRU策略就实现了。下面我们验证下前面所说的。

HashMap<String, String> map=new LinkedHashMap<String,String>(5, 0.75f, true){protected boolean removeEldestEntry(java.util.Map.Entry<String,String> eldest) {if(this.size()>5){return true;}else{return false;}}};for(int i=0;i<5;i++){map.put("key"+i,"value"+i);}for(String value:map.values()){System.out.println(value);}

输出输出结果为:

value0
value1
value2
value3
value4

下面我们get下map中的数据

       for(int i=0;i<5;i++){map.put("key"+i,"value"+i);}map.get("key"+3);for(String value:map.values()){System.out.println(value);}

输出结果为:

value0
value1
value2
value4
value3

结果和我们上面讲的是一致的。

接下来改下代码再测试下

        for(int i=0;i<5;i++){map.put("key"+i,"value"+i);}map.get("key"+3);map.put("key5","value new add");for(String value:map.values()){System.out.println(value);}

这段代码是向已经满了的LinkedHashMap中继续添加一个元素,根据前所讲,应该会删除第一个元素,即为key0元素被删除,下面看下结果:

value1
value2
value4
value3
value new add

结果与我们前面所讲的一致。

写到这里大家应该对linkedhashmap实现LRU有了一个全面的了解。利用这个机制在缓存图片的时候大大的优化内存使用率,使内存中保留的数据是经常使用的图片。

好了!就写到这里了,欢迎大家留言一起讨论!这是我第一篇博客,以后还是继续努力!~~~~

这篇关于通过LinkedHashMap缓存图片并实现LRU策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988647

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定