caffe中使用crop_size剪裁训练图片

2024-05-14 09:18

本文主要是介绍caffe中使用crop_size剪裁训练图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


下面以一个简单的例子进行介绍。

layer {name: "data"type: "Data"top: "data"top: "label"include {phase: TRAIN}transform_param {mirror: truecrop_size: 600mean_file: "examples/images/imagenet_mean.binaryproto"}data_param {source: "examples/images/train_lmdb"batch_size: 256backend: LMDB}
}
layer {name: "data"type: "Data"top: "data"top: "label"include {phase: TEST}transform_param {mirror: falsecrop_size: 600mean_file: "examples/images/imagenet_mean.binaryproto"}data_param {source: "examples/images/val_lmdb"batch_size: 50backend: LMDB}
}



从上面的 数据层的定义,看得出用了镜像和crop_size,还定义了 mean_file。

利用crop_size这种方式可以剪裁中心关注点和边角特征,mirror可以产生镜像,弥补小数据集的不足.

这里要重点讲一下crop_size在训练层与测试层的区别:

首先我们需要了解mean_file和crop_size没什么大关系。mean_file是根据训练集图片制作出来的,crop_size是对训练集图像进行裁剪,两个都是对原始的训练集图像进行处理。如果原始训练图像的尺寸大小为800*800,crop_size的图片为600*600,则mean_file与crop_size的图片均为800*800的图像集。

在caffe中,如果定义了crop_size,那么在train时会对大于crop_size的图片进行随机裁剪,而在test时只是截取中间部分(详见/caffe/src/caffe/data_transformer.cpp):


//We only do random crop when we do training.if (phase_ == TRAIN) {h_off = Rand(datum_height - crop_size + 1);w_off = Rand(datum_width - crop_size + 1);} else {h_off = (datum_height - crop_size) / 2;w_off = (datum_width - crop_size) / 2;}}



  • 从上述的代码可以看出,如果我们输入的图片尺寸大于crop_size,那么图片会被裁剪。当 phase 模式为 TRAIN 时,裁剪是随机进行裁剪,而当为TEST 模式时,其裁剪方式则只是裁剪图像的中间区域。


下面是我在网上找到的自己进行图像裁剪的程序:

可对照给出的网址进行详细阅读:http://blog.csdn.net/u011762313/article/details/48343799


我们可以手动将图片裁剪并导入pycaffe中,这样能够提高识别率(pycaffe利用caffemodel进行分类中:进行分类这一步改为如下):


#记录分类概率分布
pridects = np.zeros((1, CLASS_NUM))# 图片维度(高、宽)
img_shape = np.array(img.shape)
# 裁剪的大小(高、宽)
crop_dims = (32, 96)
crop_dims = np.array(crop_dims)
# 这里使用的图片高度全部固定为32,长度可变,最小为96
# 裁剪起点为0,终点为w_range
w_range = img_shape[1] - crop_dims[1]
# 从左往右剪一遍,再从右往左剪一遍,步长为96/4=24
for k in range(0, w_range + 1, crop_dims[1] / 4) + range(w_range, 1, -crop_dims[1] / 4):# 裁剪图片crop_img = img[:, k:k + crop_dims[1], :]# 数据输入、预处理net.blobs['data'].data[...] = transformer.preprocess('data', crop_img)# 前向迭代,即分类out = net.forward()# 每一次分类,概率分布叠加pridects += out['prob']# 取最大的概率分布为最终结果
pridect = pridects.argmax()





  • caffe中提供了过采样的方法(oversample),详见/caffe/python/caffe/io.py,裁剪的是图片中央、4个角以及镜像共10张图片。

注:如果图片过大, 需要适当缩小batch_size的值,否则使用GPU时可能超出其缓存大小而报错

这篇关于caffe中使用crop_size剪裁训练图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988368

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念