R语言数据分析案例-巴西固体燃料排放量预测与分析

本文主要是介绍R语言数据分析案例-巴西固体燃料排放量预测与分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 背景

自18世纪中叶以来,由于快速城市化、人口增长和技术发展,导致一氧化二氮(N2O)、 甲烷(CH4)和二氧化碳(CO 2)等温室气体浓度急剧上升,引发了全球变暖、海平面上 升、极端天气以及环境污染等一系列问题,严重制约了社会、经济、生态的可持续发展, 威胁人类生存与健康[1]。

由于温室气体排放增加引起的全球变暖、极 端高温和热浪、龙卷风、飓风、干旱和洪水等自然灾害成为新常态,已经成为世界各国 政府和学术界关注的焦点[ 2],因此,估算大气中CO2浓度是我们研究全球变暖等问题的 最可靠的方法,探讨CO2循环和碳源汇收支的变化规律是应对全球气候变化的关键所在。故本文针对巴西1960年-2014年固体燃料消耗产生的CO2排放量来进行分析和预测,针对特定的数据进行建模分析,最终得出相应的结论。

2 数据和方法说明

本文所运用到的数据是全球暖化数据集中的全球国家CO2排放情况表(分燃料状态)(年)其中的巴西的数据,得到数据后,对数据进行了相应的筛选,其数据展示如下:

1 1960年-2014年巴西固体燃料消耗产生的CO2排放量原始数据

SgnYear

Cntrnm

Region

IncomeGroup

Solid_CO2m

Liquid_CO2m

1960

巴西

拉丁美洲

中等偏上

4968.79

39049.88

1961

巴西

拉丁美洲

中等偏上

4682.76

41503.11

...

...

...

...

...

...

2014

巴西

拉丁美洲

中等偏上

73666.36

339028

3理论

4 实证分析

巴西固体燃料消耗产生的CO2排放量描述性统计分析

首先展示原始数据(前6行),如下图,随后进行整体数据的描述性统计分析:

表3  整体数据描述性统计

Solid_CO2m

Liquid_CO2m

min

4683

39050

1st Qu

9487

118811

median

35750

150336

mean

32212

161237

3st Qu

48522

229956

max

73666

339029

SgnYear

Cntrnm

Region

IncomeGroup

Length

55

55

55

55

calss

character

character

character

character

mode

character

character

character

character

从表3可以看出,对巴西固体和液体燃料消耗产生的CO2排放量以及其他数据进行了描述性统计,得到了最大最小值,均值以及1/4分位数和3/4分位数,其中前四个变量为非数值型变量。且下图4画出了1960年-2014年巴西固体燃料消耗产生的CO2排放量的时序图。

ARIMA模型的构建

进行ARIMA模型构建之前,要对时间序列数据纯随机性和平稳性检验。可以判断数据是否具有建模的价值以及是否适合ARIMA模型。下面对巴西固体燃料消耗产生的CO2排放量数据进行纯随机性检验和平稳性检验结果如下表4和表5:

表4  纯随机检验

滞后期数

卡方统计量

P值

滞后6期P值

234.39

0.000

滞后12期P值

350.1

0.000

下面进行自动定阶的函数,计算得到模型应该采用ARIMA(2,1,2),拟合得到模型系数:

表 7 模型定阶系数

Coefficients:

s.e.

ar1

ar2

ma1

ma2

drift

-0.1213

-0.8560

-0.1862

0.9513

1236.9922

0.1035

0.1002

0.0863

0.1673

330.2231

Sigma^2=8135344: likelihood=-505.11

Aic=1022.23 AICc=1024.01 BIC=1034.16

随后进行模型判断和误差的计算:

最后进行预测,预测3期,即未来3年巴西的巴西固体燃料消耗产生的CO2排放量,

5 结论

巴西1960年-2014年固体燃料消耗产生的CO2排放量来进行分析和预测,针对特定的数据进行建模分析,最终得出相应的结论。ARIMA模型的预测方面的还可行性,针对预测的结果,可以对政策调整和其他方面的策略判断做出相应的参考,在理论上具有一定的参考价值。

本文代码
 


dataset1<- read.xlsx("巴西不同燃料的排放量.xlsx", sheet = 1)
dataset1###首先展示数据前6行
head(dataset1,6)###随后对整体数据进行描述性添加分析
summary(dataset1)###画出1960年-2014年巴西固体燃料消耗产生的CO2排放量的时间序列图形dataset1$Solid_CO2Emission
HG_I<-ts(dataset1$Solid_CO2Emission,start=c(1960),frequency=1)
HG_I
plot(HG_I,type="o",pch=20,main="1960年-2014年巴西固体燃料消耗产生的CO2排放量时间序列图",xlab = "年份/Y",ylab="排放量",col = "green")#白噪声检验
for(i in 1:2) print(Box.test(HG_I,type = "Ljung-Box",lag=6*i))
###P值很少,很明显为非白噪声,可继续建模library(stats)
ndiffs(HG_I)
###结果显示为需要1阶差分
##但是个人看 2 阶才能平稳
diff.HG_I<-diff(HG_I,2) 
plot(diff.HG_I,main='2阶差分图')ADF2<-adf.test(diff.HG_I)  #1阶差分单位根检验
ADF2# 确定ARIMA模型中的p,q
# 这里有两种方法,一种是凭对知识点的理解通过ACF函数图和PACF函数图自行判断
# p,q的值另一种是通过软件的算法自动预测。
acf(diff.HG_I,main='差分后acf',lag.max = 12)
pacf(diff.HG_I,main='差分后pacf',lag.max = 12)###模型拟合
HG_I.fit<-auto.arima(HG_I)
HG_I.fit #模型预测
per_HG_I<-forecast(HG_I.fit,h=3)
per_HG_I
plot(per_HG_I)

巴西co2数据和BG

这篇关于R语言数据分析案例-巴西固体燃料排放量预测与分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987941

相关文章

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。

【区块链 + 人才服务】区块链集成开发平台 | FISCO BCOS应用案例

随着区块链技术的快速发展,越来越多的企业开始将其应用于实际业务中。然而,区块链技术的专业性使得其集成开发成为一项挑战。针对此,广东中创智慧科技有限公司基于国产开源联盟链 FISCO BCOS 推出了区块链集成开发平台。该平台基于区块链技术,提供一套全面的区块链开发工具和开发环境,支持开发者快速开发和部署区块链应用。此外,该平台还可以提供一套全面的区块链开发教程和文档,帮助开发者快速上手区块链开发。

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57