本文主要是介绍推荐系统介绍:(协同过滤)—Intro to Recommender Systems: Collaborative Filtering,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
本文试验前期准备:- MovieLens ml-100k数据集
- Jupyter notebook
- themoviedb.org API key
本文试验内容翻译自:http://blog.ethanrosenthal.com/2015/11/02/intro-to-collaborative-filtering/
- 添加python引用
import numpy as np import pandas as pd
- 进入MovieLens ml-100k数据存放目录
cd F:\Master\MachineLearning\kNN\ml-100k
- 读取数据:u.data每行数据分为userid,itemid,rating,时间戳四部分
names = ['user_id', 'item_id', 'rating', 'timestamp'] df = pd.read_csv('u.data', sep='\t', names=names) df.head()
user_id item_id rating timestamp 0 196 242 3 881250949 1 186 302 3 891717742 2 22 377 1 878887116 3 244 51 2 880606923 4 166 346 1 886397596 - 统计文件中用户总数与电影总数
n_users = df.user_id.unique().shape[0] n_items = df.item_id.unique().shape[0] print str(n_users) + ' users' print str(n_items) + ' items'
943 users 1682 items
- 构造 用户-电影评分矩阵
ratings = np.zeros((n_users, n_items)) for row in df.itertuples():ratings[row[1]-1, row[2]-1] = row[3] ratings
array([[ 5., 3., 4., ..., 0., 0., 0.],[ 4., 0., 0., ..., 0., 0., 0.],[ 0., 0., 0., ..., 0., 0., 0.],..., [ 5., 0., 0., ..., 0., 0., 0.],[ 0., 0., 0., ..., 0., 0., 0.],[ 0., 5., 0., ..., 0., 0., 0.]])
- 计算数据稀疏度
sparsity = float(len(ratings.nonzero()[0])) sparsity /= (ratings.shape[0] * ratings.shape[1]) sparsity *= 100 print 'Sparsity: {:4.2f}%'.format(sparsity)
Sparsity: 6.30%
数据稀疏度:6.3% - 数据稀疏度为6.3%,943个user,1682个item,每个用户平均需要做出100条评论,随机抽取10%数据,将数据分为训练集与测试机两部分
def train_test_split(ratings):test = np.zeros(ratings.shape)train = ratings.copy()for user in xrange(ratings.shape[0]):test_ratings = np.random.choice(ratings[user, :].nonzero()[0], size=10, replace=False)train[user, test_ratings] = 0.test[user, test_ratings] = ratings[user, test_ratings]# Test and training are truly disjointassert(np.all((train * test) == 0)) return train, test
train, test = train_test_split(ratings)
- 计算user或item的余弦相似性可以用代码通过for循环实现,但是这样Python代码会运行非常慢,这里可以使用NumPy的科学计算函数来表达方程式,提高计算速度
def slow_similarity(ratings, kind='user'):if kind == 'user':axmax = 0axmin = 1elif kind == 'item':axmax = 1axmin = 0sim = np.zeros((ratings.shape[axmax], ratings.shape[axmax]))for u in xrange(ratings.shape[axmax]):for uprime in xrange(ratings.shape[axmax]):rui_sqrd = 0.ruprimei_sqrd = 0.for i in xrange(ratings.shape[axmin]):sim[u, uprime] = ratings[u, i] * ratings[uprime, i]rui_sqrd += ratings[u, i] ** 2ruprimei_sqrd += ratings[uprime, i] ** 2sim[u, uprime] /= rui_sqrd * ruprimei_sqrdreturn simdef fast_similarity(ratings, kind='user', epsilon=1e-9):# epsilon -> small number for handling dived-by-zero errorsif kind == 'user':sim = ratings.dot(ratings.T) + epsilonelif kind == 'item':sim = ratings.T.dot(ratings) + epsilonnorms = np.array([np.sqrt(np.diagonal(sim))])return (sim / norms / norms.T)
%timeit fast_similarity(train, kind='user')
1 loop, best of 3: 171 ms per loop
-
分别计算user相似性和item相似性,并输出item相似性矩阵的前4行
user_similarity = fast_similarity(train, kind='user') item_similarity = fast_similarity(train, kind='item') print item_similarity[:4, :4]
[[ 1. 0.42176871 0.3440934 0.4551558 ][ 0.42176871 1. 0.2889324 0.48827863][ 0.3440934 0.2889324 1. 0.33718518][ 0.4551558 0.48827863 0.33718518 1. ]]
-
预测评分,predict_fast_simple使用NumPy数学函数,计算更块
def predict_slow_simple(ratings, similarity, kind='user'):pred = np.zeros(ratings.shape)if kind == 'user':for i in xrange(ratings.shape[0]):for j in xrange(ratings.shape[1]):pred[i, j] = similarity[i, :].dot(ratings[:, j])\/np.sum(np.abs(similarity[i, :]))return predelif kind == 'item':for i in xrange(ratings.shape[0]):for j in xrange(ratings.shape[1]):pred[i, j] = similarity[j, :].dot(ratings[i, :].T)\/np.sum(np.abs(similarity[j, :]))return preddef predict_fast_simple(ratings, similarity, kind='user'):if kind == 'user':return similarity.dot(ratings) / np.array([np.abs(similarity).sum(axis=1)]).Telif kind == 'item':return ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)])
%timeit predict_slow_simple(train, user_similarity, kind='user')
-
使用sklearn计算MSE,首先去除数据矩阵中的无效0值,然后直接调用sklearn里面的mean_squared_error函数计算MSE
from sklearn.metrics import mean_squared_errordef get_mse(pred, actual):# Ignore nonzero terms.pred = pred[actual.nonzero()].flatten()actual = actual[actual.nonzero()].flatten()return mean_squared_error(pred, actual)
item_prediction = predict_fast_simple(train, item_similarity, kind='item') user_prediction = predict_fast_simple(train, user_similarity, kind='user')print 'User-based CF MSE: ' + str(get_mse(user_prediction, test)) print 'Item-based CF MSE: ' + str(get_mse(item_prediction, test))
User-based CF MSE: 8.44170489251 Item-based CF MSE: 11.5717812485
-
为提高预测的MSE,可以只考虑使用与目标用户最相似的k个用户的数据,进行Top-k预测并进行MSE计算
def predict_topk(ratings, similarity, kind='user', k=40):pred = np.zeros(ratings.shape)if kind == 'user':for i in xrange(ratings.shape[0]):top_k_users = [np.argsort(similarity[:,i])[:-k-1:-1]]for j in xrange(ratings.shape[1]):pred[i, j] = similarity[i, :][top_k_users].dot(ratings[:, j][top_k_users]) pred[i, j] /= np.sum(np.abs(similarity[i, :][top_k_users]))if kind == 'item':for j in xrange(ratings.shape[1]):top_k_items = [np.argsort(similarity[:,j])[:-k-1:-1]]for i in xrange(ratings.shape[0]):pred[i, j] = similarity[j, :][top_k_items].dot(ratings[i, :][top_k_items].T) pred[i, j] /= np.sum(np.abs(similarity[j, :][top_k_items])) return pred
pred = predict_topk(train, user_similarity, kind='user', k=40) print 'Top-k User-based CF MSE: ' + str(get_mse(pred, test))pred = predict_topk(train, item_similarity, kind='item', k=40) print 'Top-k Item-based CF MSE: ' + str(get_mse(pred, test))
计算结果为:
Top-k User-based CF MSE: 6.47059807493 Top-k Item-based CF MSE: 7.75559095568
相比之前的方法,MSE已经降低了不少。
- 为进一步降低MSE,这里尝试使用不同的k值寻找最小的MSE,使用matplotlib 可视化输出结果
k_array = [5, 15, 30, 50, 100, 200] user_train_mse = [] user_test_mse = [] item_test_mse = [] item_train_mse = []def get_mse(pred, actual):pred = pred[actual.nonzero()].flatten()actual = actual[actual.nonzero()].flatten()return mean_squared_error(pred, actual)for k in k_array:user_pred = predict_topk(train, user_similarity, kind='user', k=k)item_pred = predict_topk(train, item_similarity, kind='item', k=k)user_train_mse += [get_mse(user_pred, train)]user_test_mse += [get_mse(user_pred, test)]item_train_mse += [get_mse(item_pred, train)]item_test_mse += [get_mse(item_pred, test)]
%matplotlib inline import matplotlib.pyplot as plt import seaborn as sns sns.set()pal = sns.color_palette("Set2", 2)plt.figure(figsize=(8, 8)) plt.plot(k_array, user_train_mse, c=pal[0], label='User-based train', alpha=0.5, linewidth=5) plt.plot(k_array, user_test_mse, c=pal[0], label='User-based test', linewidth=5) plt.plot(k_array, item_train_mse, c=pal[1], label='Item-based train', alpha=0.5, linewidth=5) plt.plot(k_array, item_test_mse, c=pal[1], label='Item-based test', linewidth=5) plt.legend(loc='best', fontsize=20) plt.xticks(fontsize=16); plt.yticks(fontsize=16); plt.xlabel('k', fontsize=30); plt.ylabel('MSE', fontsize=30);
从图中可以看出,在测试数据集中,k为15和50时分别产生一个最小值对基于用户和基于项目的协同过滤 - 计算无偏置下均方根误差MSE
def predict_nobias(ratings, similarity, kind='user'):if kind == 'user':user_bias = ratings.mean(axis=1)ratings = (ratings - user_bias[:, np.newaxis]).copy()pred = similarity.dot(ratings) / np.array([np.abs(similarity).sum(axis=1)]).Tpred += user_bias[:, np.newaxis]elif kind == 'item':item_bias = ratings.mean(axis=0)ratings = (ratings - item_bias[np.newaxis, :]).copy()pred = ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)])pred += item_bias[np.newaxis, :]return pred
user_pred = predict_nobias(train, user_similarity, kind='user') print 'Bias-subtracted User-based CF MSE: ' + str(get_mse(user_pred, test))item_pred = predict_nobias(train, item_similarity, kind='item') print 'Bias-subtracted Item-based CF MSE: ' + str(get_mse(item_pred, test))
Bias-subtracted User-based CF MSE: 8.67647634245 Bias-subtracted Item-based CF MSE: 9.71148412222
- 将Top-k和偏置消除算法结合起来,计算基于User的和基于Item的MSE,并分别取k=5,15,30,50,100,200,将计算的MSE结果运用matplotlib 可视化输出
def predict_topk_nobias(ratings, similarity, kind='user', k=40):pred = np.zeros(ratings.shape)if kind == 'user':user_bias = ratings.mean(axis=1)ratings = (ratings - user_bias[:, np.newaxis]).copy()for i in xrange(ratings.shape[0]):top_k_users = [np.argsort(similarity[:,i])[:-k-1:-1]]for j in xrange(ratings.shape[1]):pred[i, j] = similarity[i, :][top_k_users].dot(ratings[:, j][top_k_users]) pred[i, j] /= np.sum(np.abs(similarity[i, :][top_k_users]))pred += user_bias[:, np.newaxis]if kind == 'item':item_bias = ratings.mean(axis=0)ratings = (ratings - item_bias[np.newaxis, :]).copy()for j in xrange(ratings.shape[1]):top_k_items = [np.argsort(similarity[:,j])[:-k-1:-1]]for i in xrange(ratings.shape[0]):pred[i, j] = similarity[j, :][top_k_items].dot(ratings[i, :][top_k_items].T) pred[i, j] /= np.sum(np.abs(similarity[j, :][top_k_items])) pred += item_bias[np.newaxis, :]return pred
k_array = [5, 15, 30, 50, 100, 200] user_train_mse = [] user_test_mse = [] item_test_mse = [] item_train_mse = []for k in k_array:user_pred = predict_topk_nobias(train, user_similarity, kind='user', k=k)item_pred = predict_topk_nobias(train, item_similarity, kind='item', k=k)user_train_mse += [get_mse(user_pred, train)]user_test_mse += [get_mse(user_pred, test)]item_train_mse += [get_mse(item_pred, train)]item_test_mse += [get_mse(item_pred, test)] In [29]:
pal = sns.color_palette("Set2", 2)plt.figure(figsize=(8, 8)) plt.plot(k_array, user_train_mse, c=pal[0], label='User-based train', alpha=0.5, linewidth=5) plt.plot(k_array, user_test_mse, c=pal[0], label='User-based test', linewidth=5) plt.plot(k_array, item_train_mse, c=pal[1], label='Item-based train', alpha=0.5, linewidth=5) plt.plot(k_array, item_test_mse, c=pal[1], label='Item-based test', linewidth=5) plt.legend(loc='best', fontsize=20) plt.xticks(fontsize=16); plt.yticks(fontsize=16); plt.xlabel('k', fontsize=30); plt.ylabel('MSE', fontsize=30);
- 导入requests引用,通过requests.get方法获取链接地址
import requests import jsonresponse = requests.get('http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)') print response.url.split('/')[-2]
Movie ID 输出结果:tt0114709
- 这里需要使用themoviedb的API,通过查询themoviedb.org的API获取指定movie id 的海报文件存放路径
# Get base url filepath structure. w185 corresponds to size of movie poster. headers = {'Accept': 'application/json'} payload = {'api_key': '这里填入你的API'} response = requests.get("http://api.themoviedb.org/3/configuration", params=payload, headers=headers) response = json.loads(response.text) base_url = response['images']['base_url'] + 'w185'def get_poster(imdb_url, base_url):# Get IMDB movie IDresponse = requests.get(imdb_url)movie_id = response.url.split('/')[-2]# Query themoviedb.org API for movie poster path.movie_url = 'http://api.themoviedb.org/3/movie/{:}/images'.format(movie_id)headers = {'Accept': 'application/json'}payload = {'api_key': '这里填入你的API'} response = requests.get(movie_url, params=payload, headers=headers)try:file_path = json.loads(response.text)['posters'][0]['file_path']except:# IMDB movie ID is sometimes no good. Need to get correct one.movie_title = imdb_url.split('?')[-1].split('(')[0]payload['query'] = movie_titleresponse = requests.get('http://api.themoviedb.org/3/search/movie', params=payload, headers=headers)movie_id = json.loads(response.text)['results'][0]['id']payload.pop('query', None)movie_url = 'http://api.themoviedb.org/3/movie/{:}/images'.format(movie_id)response = requests.get(movie_url, params=payload, headers=headers)file_path = json.loads(response.text)['posters'][0]['file_path']return base_url + file_path
from IPython.display import Image from IPython.display import displaytoy_story = 'http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)' Image(url=get_poster(toy_story, base_url))
直接输出了电影的海报图片
- 加载MovieLens中u.data文件中的电影信息,根据给定的电影信息,计算最相似的k个电影,输出它们的海报
# Load in movie data idx_to_movie = {} with open('u.item', 'r') as f:for line in f.readlines():info = line.split('|')idx_to_movie[int(info[0])-1] = info[4]def top_k_movies(similarity, mapper, movie_idx, k=6):return [mapper[x] for x in np.argsort(similarity[movie_idx,:])[:-k-1:-1]]
idx = 0 # Toy Story movies = top_k_movies(item_similarity, idx_to_movie, idx) posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
display(*posters)
- 输出id为1的电影(GoldenEye)的最相似的k(k默认为6)部电影海报
idx = 1 # GoldenEye movies = top_k_movies(item_similarity, idx_to_movie, idx) posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies) display(*posters)
- 输出id为2的电影(Muppet Treasure Island)的最相似的k(k默认为6)部电影海报
idx = 20 # Muppet Treasure Island movies = top_k_movies(item_similarity, idx_to_movie, idx) posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies) display(*posters)
- 输出id为20的电影(Muppet Treasure Island)的最相似的k(k默认为6)部电影海报
idx = 20 # Muppet Treasure Island movies = top_k_movies(item_similarity, idx_to_movie, idx) posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies) display(*posters)
- 输出id为40的电影(Billy Madison)的最相似的k(k默认为6)部电影海报
idx = 40 # Billy Madison movies = top_k_movies(item_similarity, idx_to_movie, idx) posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies) display(*posters)
- 有时候现在这个的推荐结果似乎并不总是很好,Star Wars最相似的电影是Toy Story?Star Wars这类很受欢迎的电影在系统中预测评分很高,可以考虑运用一个不同的相似度度量方法——pearson相关度来移除一些偏置
from sklearn.metrics import pairwise_distances # Convert from distance to similarity item_correlation = 1 - pairwise_distances(train.T, metric='correlation') item_correlation[np.isnan(item_correlation)] = 0.
- 再此分别对id为0,1,20,40的电影进行最相似的k部电影预测
idx = 0 # Toy Story movies = top_k_movies(item_correlation, idx_to_movie, idx) posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies) display(*posters)
idx = 1 # GoldenEye movies = top_k_movies(item_correlation, idx_to_movie, idx) posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies) display(*posters)
idx = 20 # Muppet Treasure Island movies = top_k_movies(item_correlation, idx_to_movie, idx) posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies) display(*posters)
idx = 40 # Billy Madison movies = top_k_movies(item_correlation, idx_to_movie, idx) posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies) display(*posters)
sim(u,u′)=cos(θ)=ru˙ru′∥ru∥∥ru′∥=∑iruiru′i∑ir2ui−−−−−√∑ir2u′i−−−−−√
这篇关于推荐系统介绍:(协同过滤)—Intro to Recommender Systems: Collaborative Filtering的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!