【RAG 论文】BGM:为 LLM 和 Retriever 的偏好 gap 搭建一个 Bridge

2024-05-14 01:28

本文主要是介绍【RAG 论文】BGM:为 LLM 和 Retriever 的偏好 gap 搭建一个 Bridge,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:Bridging the Preference Gap between Retrievers and LLMs

⭐⭐⭐

Google Research, arXiv:2401.06954

论文速读

LLM 与 Retriever 之间存在一个 preference gap:大多数 retriever 被设计为 human-friendly,但是 LLM 的偏好与人类的却不一致:

  • ranking 方面:由于 LLM 的 self-attention 机制,模型可以集中任何 token 而无视其 position。但人类对于 position 还是很关注的。
  • selection 方面:人类可以轻易地忽视掉与上下文无关的信息,但 LLM 却对于无关内容特别敏感。
  • repetition 方面:人类往往不关心重复内容,甚至不喜欢重复内容,但是 repetition 却在对于 LLM 在衡量相关性的权重时很有帮助。

论文原文设计了一些实验来证明 preference gap 确实存在,具体可以参考原论文。

为了弥补 LLM 和 Retriever 之间的 preference gap,过去的研究工作往往是集中于对 LLM 或 Retriever 进行微调,但其实无论是 LLM 还是 Retriever 都很可能是无法微调的

比如对于生产级的 Retriever,如 Google 或 Bing,都是不能被微调的。

本论文提出了 BGMBridging the Gap between retrievers and LLMs)框架来解决这个问题:它在 LLM 和 Retriever 之间额外添加了一个 seq2seq 的 Bridge 模型,这个 Bridge 模型的输入是 retrieved passages,输出是 LLM-friendly passages。(如下图的最三个模型)

20240513220814

这里的 Bridge 模型是可以训练的,训练过程分成了两个阶段:监督学习(SL)阶段和强化学习(RL)阶段。

Bridge 模型的训练

阶段 1:SL 阶段

首先是 Supervised Learning(SL)阶段。

SL 学习往往需要 golden passage sequence 作为每个 query 的 label 从而实现监督学习,但是 golden passage sequence 是一种理想的情况,由于实际应用中不存在这样的真是标签,且对于一个 query,有太多有效的段落组合方式,从中选出最理想的答案在计算上是不可行的。

于是本文使用 sliver passage sequence(SPS)作为训练标签,也就是次优的标签。因此我们首先需要合成出用于 SL 的 SPS 数据。

SPS 数据的合成关键是用了贪心搜索的思想,通过迭代,最开始的段落序列是一个 empty sequence,之后逐步添加能够提升 downstream task 表现的最佳 passage,并将其加入到 SPS 中,直到无法进一步改善性能为止。

sliver passage sequence 用于监督学习阶段,作为训练目标,帮助桥接模型学习如何从检索到的段落中选择和排序,以生成对 downstream task 最有帮助的段落序列。

阶段 2:RL 阶段

实验发现,只使用 SL 来训练 Bridge model 是不够的,SL only 的模型最终的表现并不好,原因可能就是稀疏的 supervision 以及缺少在 downstream results 上的 end-to-end training。

为了解决这些问题,论文进一步对 SL 训练后的 Bridge Model 做进一步的强化学习,RL 可以让 Bridge model 学习到 optimal passage sequence 所需要的更加复杂的操作(比如 repetition)。

RL 的使用方法是:

  • downstream task 的 performance 被用来设计 reward。比如 QA 任务中的 BLEU 分数。
  • bridge model 就是需要训练的 policy model
  • action space 定义了模型可以采取的所有可能动作,在这篇论文中,action space 可能包括选择哪些 passages、它们的顺序、以及是否需要重复某些 passage 等。
  • Environment 就是由 Retriever、Bridge Model、LLM 组成的整体。

训练阶段的优化算法可以是任何 off-the-shelf RL 算法,论文提到了使用 PPO 作为优化算法。

总结

本论文提出的问题是现实存在的:LLM 和 Retriever 往往都是 Frozen 的,都是无法微调的,但两者之间的 preference gap 又是明显存在的

本文提出引入一个 Bridge Model 来填补这个 gap,但是本文提出的训练方法有点太复杂了,也许有进一步简化的思路。

这篇关于【RAG 论文】BGM:为 LLM 和 Retriever 的偏好 gap 搭建一个 Bridge的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987360

相关文章

Mycat搭建分库分表方式

《Mycat搭建分库分表方式》文章介绍了如何使用分库分表架构来解决单表数据量过大带来的性能和存储容量限制的问题,通过在一对主从复制节点上配置数据源,并使用分片算法将数据分配到不同的数据库表中,可以有效... 目录分库分表解决的问题分库分表架构添加数据验证结果 总结分库分表解决的问题单表数据量过大带来的性能

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

鸿蒙开发搭建flutter适配的开发环境

《鸿蒙开发搭建flutter适配的开发环境》文章详细介绍了在Windows系统上如何创建和运行鸿蒙Flutter项目,包括使用flutterdoctor检测环境、创建项目、编译HAP包以及在真机上运... 目录环境搭建创建运行项目打包项目总结环境搭建1.安装 DevEco Studio NEXT IDE

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

pico2 开发环境搭建-基于ubuntu

pico2 开发环境搭建-基于ubuntu 安装编译工具链下载sdk 和example编译example 安装编译工具链 sudo apt install cmake gcc-arm-none-eabi libnewlib-arm-none-eabi libstdc++-arm-none-eabi-newlib 注意cmake的版本,需要在3.17 以上 下载sdk 和ex

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear