数据可视化训练第6天(美国人口调查获得关于收入与教育背景的数据,并且可视化)

本文主要是介绍数据可视化训练第6天(美国人口调查获得关于收入与教育背景的数据,并且可视化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据来源

https://archive.ics.uci.edu/dataset/2/adult

过程

首先;关于教育背景的部分翻译有问题。
本次使用字典嵌套记录数据,并且通过lambda在sorted内部进行对某个字典的排序,最后用plotly进行绘图
本次提取数据的时候,用到了array的布尔型数组,这是比较方便的一种做法

import numpy as np
import matplotlib.pyplot as plt
from plotly.graph_objs import Bar,Layout
from plotly import offlinefilename='/Users/oommnn/Desktop/学习笔记/数据可视化30天项目/adult.csv'
change_educations=['学士','大专','11年级','研究生','教授','副学士','副学士','9年级','7 -8年级','12年级','硕士','1 -4年级','10年级','博士','5 -6年级','学前']
educations=[' Bachelors', ' Some-college', ' 11th', ' HS-grad', ' Prof-school',' Assoc-acdm', ' Assoc-voc', ' 9th', ' 7th-8th', ' 12th', ' Masters', ' 1st-4th', ' 10th', ' Doctorate', ' 5th-6th', ' Preschool']#生成结果字典
results={}
for education in change_educations:results[education]={'sum':0,'sum_over_50k':0,'ratio':0.0}user_info=np.dtype([('education','U20'),('income','U10')])
data=np.loadtxt(filename,delimiter=',',dtype=user_info,usecols=(3,14))#替换数据
i=0
for education in educations:flag=(data['education']==education)data['education'][flag]=change_educations[i]i=i+1#获得总数和超过50k的数据
for education in change_educations:isedu=data['education']==education#记录每个学位的总人数results[education]['sum']=len(data['education'][isedu])#获得超过50k的该学位的布尔数组isrel=data[isedu]['income']==' >50K'results[education]['sum_over_50k']=len(data[isedu][isrel])results[education]['ratio']=results[education]['sum_over_50k']/results[education]['sum']#key=lambda item: item[1] 是Python中用于排序或过滤列表的一个常见表达式。
#这里的 lambda 创建了一个匿名函数,它接受一个参数 item(假设是一个元组或其他可迭代对象),然后返回 item 的第二个元素,即 item[1]。
#返回的是列表的元组;按照item进行排序
sorted_items_by_values = sorted(results.items(), key=lambda item: item[1]['ratio'],reverse=True)
sorted_dict_by_values = dict(sorted_items_by_values)
#print(sorted_items_by_values)#获得x,y和hovertext的值
x_values=list(sorted_dict_by_values.keys())
y_values=list(sorted_dict_by_values[key]['ratio'] for key in sorted_dict_by_values.keys())
hovertext_values=list(f"总数:{sorted_dict_by_values[key]['sum']}" for key in sorted_dict_by_values.keys())#可视化;并且鼠标显示总人数标签
data=[{'type':'bar','x':x_values,'y':y_values,'hovertext':hovertext_values
}]mylayout={'title':'教育背景与收入超过50k统计','xaxis':{'title':'教育背景',},'yaxis':{'title':'超过50k的人数/总人数'}}
fig={'data':data,'layout':mylayout}
offline.plot(fig,filename='adult.html')

在这里插入图片描述

这篇关于数据可视化训练第6天(美国人口调查获得关于收入与教育背景的数据,并且可视化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987128

相关文章

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

css渐变色背景|<gradient示例详解

《css渐变色背景|<gradient示例详解》CSS渐变是一种从一种颜色平滑过渡到另一种颜色的效果,可以作为元素的背景,它包括线性渐变、径向渐变和锥形渐变,本文介绍css渐变色背景|<gradien... 使用渐变色作为背景可以直接将渐China编程变色用作元素的背景,可以看做是一种特殊的背景图片。(是作为背

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内