算法题解记录25+++验证二叉搜索树(百日筑基)

2024-05-13 20:52

本文主要是介绍算法题解记录25+++验证二叉搜索树(百日筑基),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述:

        难度:中等

        给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

  • 节点的左

    子树

    只包含 小于 当前节点的数。
  • 节点的右子树只包含 大于 当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

示例 1:

输入:root = [2,1,3]
输出:true

示例 2:

输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。

提示:

  • 树中节点数目范围在[1, 10^4] 内
  • -2^31 <= Node.val <= 2^31 - 1

解题准备:

        1.题意:题目要求验证一棵二叉树,是不是二叉搜索树(BST,即Binary Search Tree),那么我们首先要知道,一棵二叉搜索树是什么样的。

        简单地说,BST有如下性质:第一,其左子树上所有节点的值,都小于根节点值;第二,其右子树上所有节点的值,都大于根节点的值。第三,BST下所有节点,都有BST的性质。

        2.基本操作:就题目看,不涉及增删改,验证必然要涉及查找遍历,姑且认为只有查找和比较。

        3.基础原理:面对树的题目,我们应敏锐地察觉到至少两种方法---BFS广度优先搜索和DFS深度优先搜索。这两种方法几乎是树的算法的基础,大多数算法,都是在二者之上优化而得。

解题思路:

        朴素地说,对于新手,其实一看到这个题目,是不会有什么思路的。

        然而,如果说做过一些题,就能直接得到答案,也非常夸张。

        我在此分享我的错误思路。

        错误思路---左右递归判断

                我最开始的思路比较简单,基于两个基本原理:

                第一,如果一棵树左子节点left的值,大于或等于根节点root的值,说明它不是BST。

                第二,如果一棵树右子节点right的值,小于或等于根节点root的值,说明不是BST。

                这两个原理没有错,却不完全,如果一棵树满足这两个原理,也有可能不是BST,比如下图,7大于5,却满足这个原理,同样,3小于5,也满足这个原理。

                这两个原理没有满足整体,所以我编写的代码在运行之后也报错了,不过,我会在下面提供代码。我先在此说明我的思考过程。【如何将这两个原理转化为代码的】

                第一步,有了原理,尽量往dfs或者bfs方法上靠近。

                第二步,发现判断一个节点是否满足2个原理,只需要判断left与root的关系、right与root的关系即可。【异常处理还没做】

                第三步,得到问题:虽然判断一个节点很简单,怎么判断下一个呢?

                第四步,初始的朴素思想:干脆中序遍历或前序遍历一遍,得到所有节点(存储List),依次进行判断?

                第五步,想到优化思路,既然中序遍历能够遍历每个节点,为什么要遍历一边,然后又从List再遍历一遍?

                第六步,中序原理是左根右,访问操作只在根节点做,那么继续左中右方法,把判断左子放在“左”,判断右子放在“右”,根节点的数据访问忽略了,就可以了。

                第七步,异常:访问到空节点null。

                第八步:if限制,null节点直接返回,又因为要判断子节点与根节点的关系,返回明显不能处理,所以需要额外判断子节点是否为null。

                完成。

        正确思路---中序遍历序列

                这个思路首先要明白一件事:中序遍历,其顺序是左子树、根节点、右子树。

                其中,在左子树left中,其顺序也是left的左子树、left、left的右子树。

                如果一棵树只有一个节点,毫无疑问它是升序的。

                假设这棵树root,它的左子树是left,右子树是right。

                那么,中序遍历时,一定会访问到left的最左子节点X,它是升序的。

                接着,访问最左子节点的父节点F,由于BST性质,最左子X小于F,所以是升序的。

                然后,访问F的右子【也有可能是右子的左子、右子的左子的左子……】P,由于BST性质,XFP升序排列。

                由于这棵树升序排列,那么,它的父树也升序排列,最后,left升序排列,整个节点的中序序列,都升序排列。

                由此,我们只需要得到中序序列,即可判断。

        正确思路---区间逼近

                这个思路是题解的思路,不过与我的错误思路非常接近,它把我的2个原理推进了。

                原理1:左子节点left,一定比root小,左子的左子,一定比root小;左子的右子,一定比root小,并且比左子大……

                原理2:右子节点right,一定比root大,右子的右子,一定比root大;右子的左子,一定比root大,并且比右子小。

                如此,我们可以发现,我的错误思路,就在于判断时,只是把节点与其左右子进行判断,忽略了最重要的根节点。

                然而,问题出现了:如果我们持续用root的值,作为判断依据,如下图:5作为右边所有节点的下限,没有问题,但是9却比7要大,也就是说子树7不符合BST的性质,所以整棵树不是BST。

                换句话说,我们要求上下限是不断变化的,这其实也是二叉树的精髓部分。

                怎么做呢?

                一般的想法是,维护两个变量low、up,使它们代表某个节点的上下限,在每次判断时作为依据。

                不过,如果这两个变量只是代表1个节点上下限,那么我们要开辟一个非常大的空间,用来存储所有的变量对low、up。

                所以,借助递归的方案,我们把维护变量对的操作交给系统,我们只需要递归调用时,传递变量对即可。

解题难点分析:

        无

错误代码---我的思路:

class Solution {public boolean isValidBST(TreeNode root) {boolean flag = true;// 为null不判断if(root.left!=null){if(root.left.val>=root.val){return false;}flag = isValidBST(root.left);}// 看一下是否不是BSTif(!flag){return flag;}// 同理if(root.right!=null){if(root.right.val<=root.val){return false;}flag = isValidBST(root.right);}return flag;}
}

代码---中序遍历:

class Solution {public boolean isValidBST(TreeNode root) {// 存储节点List<Integer> data = new ArrayList<>();fuzhu(root, data);// 依次判断for(int i=0; i<data.size()-1; i++){if(data.get(i) >= data.get(i+1)){return false;}}return true;}private void fuzhu(TreeNode root, List<Integer> data){if(root==null){return;}fuzhu(root.left, data);data.add(root.val);fuzhu(root.right, data);}
}

代码---迭代上下限:

class Solution {public boolean isValidBST(TreeNode root) {return fuzhu(root, Long.MIN_VALUE, Long.MAX_VALUE);}private boolean fuzhu(TreeNode root, long low, long up){// 如果是空节点,即正确 if(root==null){return true;}// 如果超出界限,则错误// 我们可以看出来,每次递归判断,只能判断一个节点,我们不可能一起判断左子和右子if(root.val <= low || root.val >= up){return false;}// 返回左子节点、右子节点的判断。return fuzhu(root.left, low, root.val) && fuzhu(root.right, root.val, up);}
}

以上内容即我想分享的关于力扣热题25的一些知识。

        我是蚊子码农,如有补充,欢迎在评论区留言。个人也是初学者,知识体系可能没有那么完善,希望各位多多指正,谢谢大家。

这篇关于算法题解记录25+++验证二叉搜索树(百日筑基)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986798

相关文章

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

Spring Retry 实现乐观锁重试实践记录

《SpringRetry实现乐观锁重试实践记录》本文介绍了在秒杀商品SKU表中使用乐观锁和MybatisPlus配置乐观锁的方法,并分析了测试环境和生产环境的隔离级别对乐观锁的影响,通过简单验证,... 目录一、场景分析 二、简单验证 2.1、可重复读 2.2、读已提交 三、最佳实践 3.1、配置重试模板

在 Spring Boot 中使用异步线程时的 HttpServletRequest 复用问题记录

《在SpringBoot中使用异步线程时的HttpServletRequest复用问题记录》文章讨论了在SpringBoot中使用异步线程时,由于HttpServletRequest复用导致... 目录一、问题描述:异步线程操作导致请求复用时 Cookie 解析失败1. 场景背景2. 问题根源二、问题详细分

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据