算法题解记录25+++验证二叉搜索树(百日筑基)

2024-05-13 20:52

本文主要是介绍算法题解记录25+++验证二叉搜索树(百日筑基),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述:

        难度:中等

        给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

  • 节点的左

    子树

    只包含 小于 当前节点的数。
  • 节点的右子树只包含 大于 当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

示例 1:

输入:root = [2,1,3]
输出:true

示例 2:

输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。

提示:

  • 树中节点数目范围在[1, 10^4] 内
  • -2^31 <= Node.val <= 2^31 - 1

解题准备:

        1.题意:题目要求验证一棵二叉树,是不是二叉搜索树(BST,即Binary Search Tree),那么我们首先要知道,一棵二叉搜索树是什么样的。

        简单地说,BST有如下性质:第一,其左子树上所有节点的值,都小于根节点值;第二,其右子树上所有节点的值,都大于根节点的值。第三,BST下所有节点,都有BST的性质。

        2.基本操作:就题目看,不涉及增删改,验证必然要涉及查找遍历,姑且认为只有查找和比较。

        3.基础原理:面对树的题目,我们应敏锐地察觉到至少两种方法---BFS广度优先搜索和DFS深度优先搜索。这两种方法几乎是树的算法的基础,大多数算法,都是在二者之上优化而得。

解题思路:

        朴素地说,对于新手,其实一看到这个题目,是不会有什么思路的。

        然而,如果说做过一些题,就能直接得到答案,也非常夸张。

        我在此分享我的错误思路。

        错误思路---左右递归判断

                我最开始的思路比较简单,基于两个基本原理:

                第一,如果一棵树左子节点left的值,大于或等于根节点root的值,说明它不是BST。

                第二,如果一棵树右子节点right的值,小于或等于根节点root的值,说明不是BST。

                这两个原理没有错,却不完全,如果一棵树满足这两个原理,也有可能不是BST,比如下图,7大于5,却满足这个原理,同样,3小于5,也满足这个原理。

                这两个原理没有满足整体,所以我编写的代码在运行之后也报错了,不过,我会在下面提供代码。我先在此说明我的思考过程。【如何将这两个原理转化为代码的】

                第一步,有了原理,尽量往dfs或者bfs方法上靠近。

                第二步,发现判断一个节点是否满足2个原理,只需要判断left与root的关系、right与root的关系即可。【异常处理还没做】

                第三步,得到问题:虽然判断一个节点很简单,怎么判断下一个呢?

                第四步,初始的朴素思想:干脆中序遍历或前序遍历一遍,得到所有节点(存储List),依次进行判断?

                第五步,想到优化思路,既然中序遍历能够遍历每个节点,为什么要遍历一边,然后又从List再遍历一遍?

                第六步,中序原理是左根右,访问操作只在根节点做,那么继续左中右方法,把判断左子放在“左”,判断右子放在“右”,根节点的数据访问忽略了,就可以了。

                第七步,异常:访问到空节点null。

                第八步:if限制,null节点直接返回,又因为要判断子节点与根节点的关系,返回明显不能处理,所以需要额外判断子节点是否为null。

                完成。

        正确思路---中序遍历序列

                这个思路首先要明白一件事:中序遍历,其顺序是左子树、根节点、右子树。

                其中,在左子树left中,其顺序也是left的左子树、left、left的右子树。

                如果一棵树只有一个节点,毫无疑问它是升序的。

                假设这棵树root,它的左子树是left,右子树是right。

                那么,中序遍历时,一定会访问到left的最左子节点X,它是升序的。

                接着,访问最左子节点的父节点F,由于BST性质,最左子X小于F,所以是升序的。

                然后,访问F的右子【也有可能是右子的左子、右子的左子的左子……】P,由于BST性质,XFP升序排列。

                由于这棵树升序排列,那么,它的父树也升序排列,最后,left升序排列,整个节点的中序序列,都升序排列。

                由此,我们只需要得到中序序列,即可判断。

        正确思路---区间逼近

                这个思路是题解的思路,不过与我的错误思路非常接近,它把我的2个原理推进了。

                原理1:左子节点left,一定比root小,左子的左子,一定比root小;左子的右子,一定比root小,并且比左子大……

                原理2:右子节点right,一定比root大,右子的右子,一定比root大;右子的左子,一定比root大,并且比右子小。

                如此,我们可以发现,我的错误思路,就在于判断时,只是把节点与其左右子进行判断,忽略了最重要的根节点。

                然而,问题出现了:如果我们持续用root的值,作为判断依据,如下图:5作为右边所有节点的下限,没有问题,但是9却比7要大,也就是说子树7不符合BST的性质,所以整棵树不是BST。

                换句话说,我们要求上下限是不断变化的,这其实也是二叉树的精髓部分。

                怎么做呢?

                一般的想法是,维护两个变量low、up,使它们代表某个节点的上下限,在每次判断时作为依据。

                不过,如果这两个变量只是代表1个节点上下限,那么我们要开辟一个非常大的空间,用来存储所有的变量对low、up。

                所以,借助递归的方案,我们把维护变量对的操作交给系统,我们只需要递归调用时,传递变量对即可。

解题难点分析:

        无

错误代码---我的思路:

class Solution {public boolean isValidBST(TreeNode root) {boolean flag = true;// 为null不判断if(root.left!=null){if(root.left.val>=root.val){return false;}flag = isValidBST(root.left);}// 看一下是否不是BSTif(!flag){return flag;}// 同理if(root.right!=null){if(root.right.val<=root.val){return false;}flag = isValidBST(root.right);}return flag;}
}

代码---中序遍历:

class Solution {public boolean isValidBST(TreeNode root) {// 存储节点List<Integer> data = new ArrayList<>();fuzhu(root, data);// 依次判断for(int i=0; i<data.size()-1; i++){if(data.get(i) >= data.get(i+1)){return false;}}return true;}private void fuzhu(TreeNode root, List<Integer> data){if(root==null){return;}fuzhu(root.left, data);data.add(root.val);fuzhu(root.right, data);}
}

代码---迭代上下限:

class Solution {public boolean isValidBST(TreeNode root) {return fuzhu(root, Long.MIN_VALUE, Long.MAX_VALUE);}private boolean fuzhu(TreeNode root, long low, long up){// 如果是空节点,即正确 if(root==null){return true;}// 如果超出界限,则错误// 我们可以看出来,每次递归判断,只能判断一个节点,我们不可能一起判断左子和右子if(root.val <= low || root.val >= up){return false;}// 返回左子节点、右子节点的判断。return fuzhu(root.left, low, root.val) && fuzhu(root.right, root.val, up);}
}

以上内容即我想分享的关于力扣热题25的一些知识。

        我是蚊子码农,如有补充,欢迎在评论区留言。个人也是初学者,知识体系可能没有那么完善,希望各位多多指正,谢谢大家。

这篇关于算法题解记录25+++验证二叉搜索树(百日筑基)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986798

相关文章

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.