paddle ocr v4 2.6.1实战笔记

2024-05-13 19:52
文章标签 实战 笔记 2.6 ocr v4 paddle

本文主要是介绍paddle ocr v4 2.6.1实战笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

效果图:

安装

模型权重是自动下载,如果提前下载会报错。

识别orc,并opencv可视化结果,支持中文可视化

官方原版预测可视化:


效果图:

安装

安装2.5.2识别结果为空

pip install paddlepaddle-gpu==2.6.1

模型权重是自动下载,如果提前下载会报错。

测试代码:


import os
import time
from paddleocr import PaddleOCRfilepath = r"weights/123.jpg"ocr_model = PaddleOCR(use_angle_cls=True, lang="ch", use_gpu=True, show_log=1,det_db_box_thresh=0.1, use_dilation=True,det_model_dir='weight/ch_PP-OCRv4_det_server_infer.tar',cls_model_dir='weight/ch_ppocr_mobile_v2.0_cls_infer.tar',rec_model_dir='weight/ch_PP-OCRv4_rec_server_infer.tar')t1 = time.time()
for i in range(1):result = ocr_model.ocr(img=filepath, det=True, rec=True, cls=True)[0]
t2 = time.time()
print((t2-t1) / 10)for res_str in result:print(res_str)

识别orc,并opencv可视化结果,支持中文可视化

import codecs
import os
import timeimport cv2
import numpy as np
from PIL import ImageFont
from PIL import Image
from PIL import ImageDrawfrom paddleocr import PaddleOCRfilepath = r"weights/124.jpg"ocr_model = PaddleOCR(use_angle_cls=True, lang="ch", use_gpu=True, show_log=1,det_db_box_thresh=0.1, use_dilation=True,det_model_dir='weight/ch_PP-OCRv4_det_server_infer.tar',cls_model_dir='weight/ch_ppocr_mobile_v2.0_cls_infer.tar',rec_model_dir='weight/ch_PP-OCRv4_rec_server_infer.tar')t1 = time.time()
for i in range(1):result = ocr_model.ocr(img=filepath, det=True, rec=True, cls=True)[0]
t2 = time.time()
print((t2-t1) / 10)font_path = 'simhei.ttf'  # 需要替换为你的中文字体路径
font = ImageFont.truetype(font_path, 24)
def cv2AddChineseText(img, text, position, textColor=(0, 255, 0), textSize=30):img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))draw = ImageDraw.Draw(img)draw.text(position, text, textColor, font=font)return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)image=cv2.imread(filepath)ocr_index=0
for res_str in result:if res_str[0][0][0]>36 and res_str[0][2][0]<84:print(ocr_index,res_str)points=res_str[0]text = res_str[1][0]points = np.array(points, dtype=np.int32).reshape((-1, 1, 2))cv2.polylines(image, [points], isClosed=True, color=(255, 0, 0), thickness=2)text_position = (int(points[0][0][0]), int(points[0][0][1] + 20))  # 微调文本位置# cv2.putText(image, '中文文本', (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3)image= cv2AddChineseText(image, text, text_position, textColor=(0, 255, 0), textSize=30)print(ocr_index)if res_str[0][0][0]>346 and res_str[0][2][0]<391:print(ocr_index,res_str)points=res_str[0]text = res_str[1][0]points = np.array(points, dtype=np.int32).reshape((-1, 1, 2))cv2.polylines(image, [points], isClosed=True, color=(255, 0, 0), thickness=2)text_position = (int(points[0][0][0]), int(points[0][0][1] + 20))  # 微调文本位置# cv2.putText(image, '中文文本', (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3)image= cv2AddChineseText(image, text, text_position, textColor=(0, 255, 0), textSize=30)if res_str[0][0][0]>658 and res_str[0][2][0]<705:print(ocr_index,res_str)points=res_str[0]text=res_str[1][0]points=np.array(points,dtype=np.int32).reshape((-1, 1, 2))cv2.polylines(image, [points], isClosed=True, color=(255, 0, 0), thickness=2)text_position = (int(points[0][0][0]), int(points[0][0][1] + 20))  # 微调文本位置image= cv2AddChineseText(image, text, text_position, textColor=(0, 255, 0), textSize=30)cv2.imshow('Image with Rectangle and Text', image)
cv2.waitKey(0)

官方原版预测可视化:

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.import os
import sys
import importlib__dir__ = os.path.dirname(__file__)import paddle
from paddle.utils import try_importsys.path.append(os.path.join(__dir__, ""))import cv2
import logging
import numpy as np
from pathlib import Path
import base64
from io import BytesIO
from PIL import Image, ImageFont, ImageDraw
from tools.infer import predict_systemdef _import_file(module_name, file_path, make_importable=False):spec = importlib.util.spec_from_file_location(module_name, file_path)module = importlib.util.module_from_spec(spec)spec.loader.exec_module(module)if make_importable:sys.modules[module_name] = modulereturn moduletools = _import_file("tools", os.path.join(__dir__, "tools/__init__.py"), make_importable=True)
ppocr = importlib.import_module("ppocr", "paddleocr")
ppstructure = importlib.import_module("ppstructure", "paddleocr")
from ppocr.utils.logging import get_loggerlogger = get_logger()
from ppocr.utils.utility import (check_and_read, get_image_file_list, alpha_to_color, binarize_img, )
from ppocr.utils.network import (maybe_download, download_with_progressbar, is_link, confirm_model_dir_url, )
from tools.infer.utility import draw_ocr, str2bool, check_gpu
from ppstructure.utility import init_args, draw_structure_result
from ppstructure.predict_system import StructureSystem, save_structure_res, to_excellogger = get_logger()
__all__ = ["PaddleOCR", "PPStructure", "draw_ocr", "draw_structure_result", "save_structure_res", "download_with_progressbar", "to_excel", ]SUPPORT_DET_MODEL = ["DB"]
VERSION = "2.8.0"
SUPPORT_REC_MODEL = ["CRNN", "SVTR_LCNet"]
BASE_DIR = os.path.expanduser("~/.paddleocr/")DEFAULT_OCR_MODEL_VERSION = "PP-OCRv4"
SUPPORT_OCR_MODEL_VERSION = ["PP-OCR", "PP-OCRv2", "PP-OCRv3", "PP-OCRv4"]
DEFAULT_STRUCTURE_MODEL_VERSION = "PP-StructureV2"
SUPPORT_STRUCTURE_MODEL_VERSION = ["PP-Structure", "PP-StructureV2"]
MODEL_URLS = {"OCR": {"PP-OCRv4": {"det": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_det_infer.tar", }, "en": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar", },"ml": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/Multilingual_PP-OCRv3_det_infer.tar"}, },"rec": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/ppocr_keys_v1.txt", }, "en": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/english/en_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/en_dict.txt", },"korean": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/korean_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/korean_dict.txt", },"japan": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/japan_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/japan_dict.txt", },"chinese_cht": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt", },"ta": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/ta_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ta_dict.txt", },"te": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/te_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/te_dict.txt", },"ka": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/ka_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ka_dict.txt", },"latin": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/latin_dict.txt", },"arabic": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/arabic_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/arabic_dict.txt", },"cyrillic": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/cyrillic_dict.txt", },"devanagari": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/devanagari_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/devanagari_dict.txt", }, }, "cls": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar", }}, },"PP-OCRv3": {"det": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar", }, "en": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar", },"ml": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/Multilingual_PP-OCRv3_det_infer.tar"}, },"rec": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/ppocr_keys_v1.txt", }, "en": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/en_dict.txt", },"korean": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/korean_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/korean_dict.txt", },"japan": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/japan_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/japan_dict.txt", },"chinese_cht": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt", },"ta": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ta_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ta_dict.txt", },"te": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/te_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/te_dict.txt", },"ka": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ka_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ka_dict.txt", },"latin": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/latin_dict.txt", },"arabic": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/arabic_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/arabic_dict.txt", },"cyrillic": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/cyrillic_dict.txt", },"devanagari": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/devanagari_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/devanagari_dict.txt", }, }, "cls": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar", }}, },"PP-OCRv2": {"det": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar", }, }, "rec": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar", "dict_path": "./ppocr/utils/ppocr_keys_v1.txt", }},"cls": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar", }}, }, "PP-OCR": {"det": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar", }, "en": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_ppocr_mobile_v2.0_det_infer.tar", },"structure": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar"}, }, "rec": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/ppocr_keys_v1.txt", },"en": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/en_dict.txt", },"french": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/french_dict.txt", },"german": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/german_dict.txt", },"korean": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/korean_dict.txt", },"japan": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/japan_dict.txt", },"chinese_cht": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt", },"ta": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ta_dict.txt", },"te": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/te_dict.txt", },"ka": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ka_dict.txt", },"latin": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/latin_dict.txt", },"arabic": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/arabic_dict.txt", },"cyrillic": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/cyrillic_dict.txt", },"devanagari": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/devanagari_dict.txt", },"structure": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar", "dict_path": "ppocr/utils/dict/table_dict.txt", }, }, "cls": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar", }}, }, },"STRUCTURE": {"PP-Structure": {"table": {"en": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar", "dict_path": "ppocr/utils/dict/table_structure_dict.txt", }}}, "PP-StructureV2": {"table": {"en": {"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar", "dict_path": "ppocr/utils/dict/table_structure_dict.txt", },"ch": {"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar", "dict_path": "ppocr/utils/dict/table_structure_dict_ch.txt", }, },"layout": {"en": {"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar", "dict_path": "ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt", },"ch": {"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla_infer.tar", "dict_path": "ppocr/utils/dict/layout_dict/layout_cdla_dict.txt", }, }, }, }, }def parse_args(mMain=True):import argparseparser = init_args()parser.add_help = mMainparser.add_argument("--lang", type=str, default="ch")parser.add_argument("--det", type=str2bool, default=True)parser.add_argument("--rec", type=str2bool, default=True)parser.add_argument("--type", type=str, default="ocr")parser.add_argument("--savefile", type=str2bool, default=False)parser.add_argument("--ocr_version", type=str, choices=SUPPORT_OCR_MODEL_VERSION, default="PP-OCRv4", help="OCR Model version, the current model support list is as follows: ""1. PP-OCRv4/v3 Support Chinese and English detection and recognition model, and direction classifier model""2. PP-OCRv2 Support Chinese detection and recognition model. ""3. PP-OCR support Chinese detection, recognition and direction classifier and multilingual recognition model.", )parser.add_argument("--structure_version", type=str, choices=SUPPORT_STRUCTURE_MODEL_VERSION, default="PP-StructureV2", help="Model version, the current model support list is as follows:"" 1. PP-Structure Support en table structure model."" 2. PP-StructureV2 Support ch and en table structure model.", )for action in parser._actions:if action.dest in ["rec_char_dict_path", "table_char_dict_path", "layout_dict_path", ]:action.default = Noneif mMain:return parser.parse_args()else:inference_args_dict = {}for action in parser._actions:inference_args_dict[action.dest] = action.defaultreturn argparse.Namespace(**inference_args_dict)def parse_lang(lang):latin_lang = ["af", "az", "bs", "cs", "cy", "da", "de", "es", "et", "fr", "ga", "hr", "hu", "id", "is", "it", "ku", "la", "lt", "lv", "mi", "ms", "mt", "nl", "no", "oc", "pi", "pl", "pt", "ro", "rs_latin", "sk", "sl", "sq", "sv", "sw", "tl", "tr", "uz", "vi", "french", "german", ]arabic_lang = ["ar", "fa", "ug", "ur"]cyrillic_lang = ["ru", "rs_cyrillic", "be", "bg", "uk", "mn", "abq", "ady", "kbd", "ava", "dar", "inh", "che", "lbe", "lez", "tab", ]devanagari_lang = ["hi", "mr", "ne", "bh", "mai", "ang", "bho", "mah", "sck", "new", "gom", "sa", "bgc", ]if lang in latin_lang:lang = "latin"elif lang in arabic_lang:lang = "arabic"elif lang in cyrillic_lang:lang = "cyrillic"elif lang in devanagari_lang:lang = "devanagari"assert (lang in MODEL_URLS["OCR"][DEFAULT_OCR_MODEL_VERSION]["rec"]), "param lang must in {}, but got {}".format(MODEL_URLS["OCR"][DEFAULT_OCR_MODEL_VERSION]["rec"].keys(), lang)if lang == "ch":det_lang = "ch"elif lang == "structure":det_lang = "structure"elif lang in ["en", "latin"]:det_lang = "en"else:det_lang = "ml"return lang, det_langdef get_model_config(type, version, model_type, lang):if type == "OCR":DEFAULT_MODEL_VERSION = DEFAULT_OCR_MODEL_VERSIONelif type == "STRUCTURE":DEFAULT_MODEL_VERSION = DEFAULT_STRUCTURE_MODEL_VERSIONelse:raise NotImplementedErrormodel_urls = MODEL_URLS[type]if version not in model_urls:version = DEFAULT_MODEL_VERSIONif model_type not in model_urls[version]:if model_type in model_urls[DEFAULT_MODEL_VERSION]:version = DEFAULT_MODEL_VERSIONelse:logger.error("{} models is not support, we only support {}".format(model_type, model_urls[DEFAULT_MODEL_VERSION].keys()))sys.exit(-1)if lang not in model_urls[version][model_type]:if lang in model_urls[DEFAULT_MODEL_VERSION][model_type]:version = DEFAULT_MODEL_VERSIONelse:logger.error("lang {} is not support, we only support {} for {} models".format(lang, model_urls[DEFAULT_MODEL_VERSION][model_type].keys(), model_type, ))sys.exit(-1)return model_urls[version][model_type][lang]def img_decode(content: bytes):np_arr = np.frombuffer(content, dtype=np.uint8)return cv2.imdecode(np_arr, cv2.IMREAD_UNCHANGED)def check_img(img, alpha_color=(255, 255, 255)):"""Check the image data. If it is another type of image file, try to decode it into a numpy array.The inference network requires three-channel images, So the following channel conversions are donesingle channel image: Gray to RGB R←Y,G←Y,B←Yfour channel image: alpha_to_colorargs:img: image datafile format: jpg, png and other image formats that opencv can decode, as well as gif and pdf formatsstorage type: binary image, net image file, local image filealpha_color: Background color in images in RGBA formatreturn: numpy.array (h, w, 3) or list (p, h, w, 3) (p: page of pdf), boolean, boolean"""flag_gif, flag_pdf = False, Falseif isinstance(img, bytes):img = img_decode(img)if isinstance(img, str):# download net imageif is_link(img):download_with_progressbar(img, "tmp.jpg")img = "tmp.jpg"image_file = imgimg, flag_gif, flag_pdf = check_and_read(image_file)if not flag_gif and not flag_pdf:with open(image_file, "rb") as f:img_str = f.read()img = img_decode(img_str)if img is None:try:buf = BytesIO()image = BytesIO(img_str)im = Image.open(image)rgb = im.convert("RGB")rgb.save(buf, "jpeg")buf.seek(0)image_bytes = buf.read()data_base64 = str(base64.b64encode(image_bytes), encoding="utf-8")image_decode = base64.b64decode(data_base64)img_array = np.frombuffer(image_decode, np.uint8)img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)except:logger.error("error in loading image:{}".format(image_file))return None, flag_gif, flag_pdfif img is None:logger.error("error in loading image:{}".format(image_file))return None, flag_gif, flag_pdf# single channel image array.shape:h,wif isinstance(img, np.ndarray) and len(img.shape) == 2:img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)# four channel image array.shape:h,w,cif isinstance(img, np.ndarray) and len(img.shape) == 3 and img.shape[2] == 4:img = alpha_to_color(img, alpha_color)return img, flag_gif, flag_pdfclass PaddleOCR(predict_system.TextSystem):def __init__(self, **kwargs):"""paddleocr packageargs:**kwargs: other params show in paddleocr --help"""params = parse_args(mMain=False)params.__dict__.update(**kwargs)assert (params.ocr_version in SUPPORT_OCR_MODEL_VERSION), "ocr_version must in {}, but get {}".format(SUPPORT_OCR_MODEL_VERSION, params.ocr_version)params.use_gpu = check_gpu(params.use_gpu)if not params.show_log:logger.setLevel(logging.INFO)self.use_angle_cls = params.use_angle_clslang, det_lang = parse_lang(params.lang)# init model dirdet_model_config = get_model_config("OCR", params.ocr_version, "det", det_lang)params.det_model_dir, det_url = confirm_model_dir_url(params.det_model_dir, os.path.join(BASE_DIR, "whl", "det", det_lang), det_model_config["url"], )rec_model_config = get_model_config("OCR", params.ocr_version, "rec", lang)params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir, os.path.join(BASE_DIR, "whl", "rec", lang), rec_model_config["url"], )cls_model_config = get_model_config("OCR", params.ocr_version, "cls", "ch")params.cls_model_dir, cls_url = confirm_model_dir_url(params.cls_model_dir, os.path.join(BASE_DIR, "whl", "cls"), cls_model_config["url"], )if params.ocr_version in ["PP-OCRv3", "PP-OCRv4"]:params.rec_image_shape = "3, 48, 320"else:params.rec_image_shape = "3, 32, 320"# download model if using paddle inferif not params.use_onnx:maybe_download(params.det_model_dir, det_url)maybe_download(params.rec_model_dir, rec_url)maybe_download(params.cls_model_dir, cls_url)if params.det_algorithm not in SUPPORT_DET_MODEL:logger.error("det_algorithm must in {}".format(SUPPORT_DET_MODEL))sys.exit(0)if params.rec_algorithm not in SUPPORT_REC_MODEL:logger.error("rec_algorithm must in {}".format(SUPPORT_REC_MODEL))sys.exit(0)if params.rec_char_dict_path is None:params.rec_char_dict_path = str(Path(__file__).parent / rec_model_config["dict_path"])logger.debug(params)# init det_model and rec_modelsuper().__init__(params)self.page_num = params.page_numdef ocr(self, img, det=True, rec=True, cls=True, bin=False, inv=False, alpha_color=(255, 255, 255), ):"""OCR with PaddleOCRargs:img: img for OCR, support ndarray, img_path and list or ndarraydet: use text detection or not. If False, only rec will be exec. Default is Truerec: use text recognition or not. If False, only det will be exec. Default is Truecls: use angle classifier or not. Default is True. If True, the text with rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance. Text with rotation of 90 or 270 degrees can be recognized even if cls=False.bin: binarize image to black and white. Default is False.inv: invert image colors. Default is False.alpha_color: set RGB color Tuple for transparent parts replacement. Default is pure white."""assert isinstance(img, (np.ndarray, list, str, bytes))if isinstance(img, list) and det == True:logger.error("When input a list of images, det must be false")exit(0)if cls == True and self.use_angle_cls == False:logger.warning("Since the angle classifier is not initialized, it will not be used during the forward process")img, flag_gif, flag_pdf = check_img(img, alpha_color)# for infer pdf fileif isinstance(img, list) and flag_pdf:if self.page_num > len(img) or self.page_num == 0:imgs = imgelse:imgs = img[: self.page_num]else:imgs = [img]def preprocess_image(_image):_image = alpha_to_color(_image, alpha_color)if inv:_image = cv2.bitwise_not(_image)if bin:_image = binarize_img(_image)return _imageif det and rec:ocr_res = []for idx, img in enumerate(imgs):img = preprocess_image(img)dt_boxes, rec_res, _ = self.__call__(img, cls)if not dt_boxes and not rec_res:ocr_res.append(None)continuetmp_res = [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]ocr_res.append(tmp_res)return ocr_reselif det and not rec:ocr_res = []for idx, img in enumerate(imgs):img = preprocess_image(img)dt_boxes, elapse = self.text_detector(img)if dt_boxes.size == 0:ocr_res.append(None)continuetmp_res = [box.tolist() for box in dt_boxes]ocr_res.append(tmp_res)return ocr_reselse:ocr_res = []cls_res = []for idx, img in enumerate(imgs):if not isinstance(img, list):img = preprocess_image(img)img = [img]if self.use_angle_cls and cls:img, cls_res_tmp, elapse = self.text_classifier(img)if not rec:cls_res.append(cls_res_tmp)rec_res, elapse = self.text_recognizer(img)ocr_res.append(rec_res)if not rec:return cls_resreturn ocr_resclass PPStructure(StructureSystem):def __init__(self, **kwargs):params = parse_args(mMain=False)params.__dict__.update(**kwargs)assert (params.structure_version in SUPPORT_STRUCTURE_MODEL_VERSION), "structure_version must in {}, but get {}".format(SUPPORT_STRUCTURE_MODEL_VERSION, params.structure_version)params.use_gpu = check_gpu(params.use_gpu)params.mode = "structure"if not params.show_log:logger.setLevel(logging.INFO)lang, det_lang = parse_lang(params.lang)if lang == "ch":table_lang = "ch"else:table_lang = "en"if params.structure_version == "PP-Structure":params.merge_no_span_structure = False# init model dirdet_model_config = get_model_config("OCR", params.ocr_version, "det", det_lang)params.det_model_dir, det_url = confirm_model_dir_url(params.det_model_dir, os.path.join(BASE_DIR, "whl", "det", det_lang), det_model_config["url"], )rec_model_config = get_model_config("OCR", params.ocr_version, "rec", lang)params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir, os.path.join(BASE_DIR, "whl", "rec", lang), rec_model_config["url"], )table_model_config = get_model_config("STRUCTURE", params.structure_version, "table", table_lang)params.table_model_dir, table_url = confirm_model_dir_url(params.table_model_dir, os.path.join(BASE_DIR, "whl", "table"), table_model_config["url"], )layout_model_config = get_model_config("STRUCTURE", params.structure_version, "layout", lang)params.layout_model_dir, layout_url = confirm_model_dir_url(params.layout_model_dir, os.path.join(BASE_DIR, "whl", "layout"), layout_model_config["url"], )# download modelif not params.use_onnx:maybe_download(params.det_model_dir, det_url)maybe_download(params.rec_model_dir, rec_url)maybe_download(params.table_model_dir, table_url)maybe_download(params.layout_model_dir, layout_url)if params.rec_char_dict_path is None:params.rec_char_dict_path = str(Path(__file__).parent / rec_model_config["dict_path"])if params.table_char_dict_path is None:params.table_char_dict_path = str(Path(__file__).parent / table_model_config["dict_path"])if params.layout_dict_path is None:params.layout_dict_path = str(Path(__file__).parent / layout_model_config["dict_path"])logger.debug(params)super().__init__(params)def __call__(self, img, return_ocr_result_in_table=False, img_idx=0, alpha_color=(255, 255, 255), ):img, flag_gif, flag_pdf = check_img(img, alpha_color)if isinstance(img, list) and flag_pdf:res_list = []for index, pdf_img in enumerate(img):logger.info("processing {}/{} page:".format(index + 1, len(img)))res, _ = super().__call__(pdf_img, return_ocr_result_in_table, img_idx=index)res_list.append(res)return res_listres, _ = super().__call__(img, return_ocr_result_in_table, img_idx=img_idx)return res
def cv2AddChineseText(img, text, position, textColor=(0, 255, 0), textSize=30):img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))draw = ImageDraw.Draw(img)draw.text(position, text, textColor, font=font)return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)if __name__ == '__main__':font_path = 'simhei.ttf'  # 需要替换为你的中文字体路径font = ImageFont.truetype(font_path, 24)# for cmdargs = parse_args(mMain=True)image_dir = args.image_dirimage_file_list=['weights/123.jpg']if args.type == "ocr":engine = PaddleOCR(**(args.__dict__))elif args.type == "structure":engine = PPStructure(**(args.__dict__))else:raise NotImplementedErrorfor img_path in image_file_list:img_name = os.path.basename(img_path).split(".")[0]logger.info("{}{}{}".format("*" * 10, img_path, "*" * 10))if args.type == "ocr":image=cv2.imread(img_path)result = engine.ocr(img_path, det=args.det, rec=args.rec, cls=args.use_angle_cls, bin=args.binarize, inv=args.invert, alpha_color=args.alphacolor, )if result is not None:lines = []for idx in range(len(result)):res = result[idx]for line in res:points = line[0]text = line[1][0]points = np.array(points, dtype=np.int32).reshape((-1, 1, 2))cv2.polylines(image, [points], isClosed=True, color=(255, 0, 0), thickness=2)text_position = (int(points[0][0][0]), int(points[0][0][1] + 20))  # 微调文本位置# cv2.putText(image, '中文文本', (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3)image = cv2AddChineseText(image, text, text_position, textColor=(0, 255, 0), textSize=30)logger.info(line)val = "["for box in line[0]:val += str(box[0]) + "," + str(box[1]) + ","val = val[:-1]val += "]," + line[1][0] + "," + str(line[1][1]) + "\n"lines.append(val)if args.savefile:if os.path.exists(args.output) is False:os.mkdir(args.output)outfile = args.output + "/" + img_name + ".txt"with open(outfile, "w", encoding="utf-8") as f:f.writelines(lines)elif args.type == "structure":img, flag_gif, flag_pdf = check_and_read(img_path)if not flag_gif and not flag_pdf:img = cv2.imread(img_path)if not flag_pdf:if img is None:logger.error("error in loading image:{}".format(img_path))continueimg_paths = [[img_path, img]]else:img_paths = []for index, pdf_img in enumerate(img):os.makedirs(os.path.join(args.output, img_name), exist_ok=True)pdf_img_path = os.path.join(args.output, img_name, img_name + "_" + str(index) + ".jpg")cv2.imwrite(pdf_img_path, pdf_img)img_paths.append([pdf_img_path, pdf_img])all_res = []for index, (new_img_path, img) in enumerate(img_paths):logger.info("processing {}/{} page:".format(index + 1, len(img_paths)))new_img_name = os.path.basename(new_img_path).split(".")[0]result = engine(img, img_idx=index)save_structure_res(result, args.output, img_name, index)if args.recovery and result != []:from copy import deepcopyfrom ppstructure.recovery.recovery_to_doc import sorted_layout_boxesh, w, _ = img.shaperesult_cp = deepcopy(result)result_sorted = sorted_layout_boxes(result_cp, w)all_res += result_sortedif args.recovery and all_res != []:try:from ppstructure.recovery.recovery_to_doc import convert_info_docxconvert_info_docx(img, all_res, args.output, img_name)except Exception as ex:logger.error("error in layout recovery image:{}, err msg: {}".format(img_name, ex))continuefor item in all_res:item.pop("img")item.pop("res")logger.info(item)logger.info("result save to {}".format(args.output))cv2.imshow('image', image)cv2.waitKey(0)

这篇关于paddle ocr v4 2.6.1实战笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986668

相关文章

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2