一个可复用的C++ 3阶实方阵类和4阶实方阵类(兼容与扩展了DX中的4阶实方阵类);四元数(quaternion)模板类的使用

2024-05-13 18:48

本文主要是介绍一个可复用的C++ 3阶实方阵类和4阶实方阵类(兼容与扩展了DX中的4阶实方阵类);四元数(quaternion)模板类的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


一个可复用的C++ 3阶实方阵类和4阶实方阵类(兼容与扩展了DX中的4阶实方阵类)
部分DX矩阵函数的实现
namespace Han
{
 FLOAT WINAPI D3DXMatrixDeterminant(CONST D3DXMATRIX *pM)
{
     D3DXMATRIX mtx=*pM;
     FLOAT ret=Bsdet(&mtx(0,0),4);//第一个参数是输入输出参数
     return ret;
}
D3DXMATRIX* D3DXMatrixIdentity(D3DXMATRIX *pOut)
{
//identity matrix
memset(pOut,0,sizeof(D3DXMATRIX));
pOut->m[0][0]=1;
pOut->m[1][1]=1;
pOut->m[2][2]=1;
pOut->m[3][3]=1;
return pOut;
}
//Build a matrix which scales by (sx,sy,sz)
D3DXMATRIX* D3DXMatrixScaling(D3DXMATRIX *pOut,FLOAT sx,FLOAT sy,FLOAT sz)
{
//创建一个沿着X,Y和Z轴方向缩放矩阵
memset(pOut,0,sizeof(D3DXMATRIX));
pOut->m[0][0]=sx;
pOut->m[1][1]=sy;
pOut->m[2][2]=sz;
pOut->m[3][3]=1;
return pOut;
}
//Build a matrix which translates by (x,y,z)
D3DXMATRIX* D3DXMatrixTranslation(D3DXMATRIX *pOut,FLOAT x,FLOAT y,FLOAT z)
{
//创建一个沿着X,Y和Z轴方向平移矩阵
memset(pOut,0,sizeof(D3DXMATRIX));
pOut->m[0][0]=1;
pOut->m[1][1]=1;
pOut->m[2][2]=1;
pOut->m[3][3]=1;
pOut->m[3][0]=x;
pOut->m[3][1]=y;
pOut->m[3][2]=z;
return pOut;
}
//Build a matrix which rotates around the X axis
D3DXMATRIX* D3DXMatrixRotationX(D3DXMATRIX *pOut,FLOAT Angle)
{
//创建一个绕X轴旋转Angle弧度的旋转矩阵
memset(pOut,0,sizeof(D3DXMATRIX));
pOut->m[0][0]=1;
pOut->m[1][1]=cos(Angle);
pOut->m[2][2]=cos(Angle);
pOut->m[3][3]=1;
pOut->m[1][2]=sin(Angle);
pOut->m[2][1]=-sin(Angle);
return pOut;
}
//Build a matrix which rotates around the Y axis
D3DXMATRIX* D3DXMatrixRotationY(D3DXMATRIX *pOut,FLOAT Angle)
{
//创建一个绕Y轴旋转Angle弧度的旋转矩阵
memset(pOut,0,sizeof(D3DXMATRIX));
pOut->m[0][0]=cos(Angle);
pOut->m[1][1]=1;
pOut->m[2][2]=cos(Angle);
pOut->m[3][3]=1;
pOut->m[0][2]=-sin(Angle);
pOut->m[2][0]=sin(Angle);
return pOut;
}
//Build a matrix which rotates around the Z axis
D3DXMATRIX* D3DXMatrixRotationZ(D3DXMATRIX *pOut,FLOAT Angle)
{
//创建一个绕Z轴旋转Angle弧度的旋转矩阵
memset(pOut,0,sizeof(D3DXMATRIX));
pOut->m[0][0]=cos(Angle);
pOut->m[1][1]=cos(Angle);
pOut->m[2][2]=1;
pOut->m[3][3]=1;
pOut->m[0][1]=sin(Angle);
pOut->m[1][0]=-sin(Angle);
return pOut;
}
//Transform (x,y,z,1) by matrix
D3DXVECTOR4* D3DXVec3Transform(D3DXVECTOR4 *pOut,CONST D3DXVECTOR4 *pV,CONST D3DXMATRIX *pM)
{
#if 1
//MV
D3DXVECTOR4 v(pV->x,pV->y,pV->z,1);
pOut->x=(*pM)(0,0)*v.x+(*pM)(0,1)*v.y+(*pM)(0,2)*v.z+(*pM)(0,3)*v.w;
pOut->y=(*pM)(1,0)*v.x+(*pM)(1,1)*v.y+(*pM)(1,2)*v.z+(*pM)(1,3)*v.w;
pOut->z=(*pM)(2,0)*v.x+(*pM)(2,1)*v.y+(*pM)(2,2)*v.z+(*pM)(2,3)*v.w;
pOut->w=(*pM)(3,0)*v.x+(*pM)(3,1)*v.y+(*pM)(3,2)*v.z+(*pM)(3,3)*v.w;
return pOut;
#else
//VM
D3DXVECTOR4 v(pV->x,pV->y,pV->z,1);
pOut->x=(*pM)(0,0)*v.x+(*pM)(1,0)*v.y+(*pM)(2,0)*v.z+(*pM)(3,0)*v.w;
pOut->y=(*pM)(0,1)*v.x+(*pM)(1,1)*v.y+(*pM)(2,1)*v.z+(*pM)(3,1)*v.w;
pOut->z=(*pM)(0,2)*v.x+(*pM)(1,2)*v.y+(*pM)(2,2)*v.z+(*pM)(3,2)*v.w;
pOut->w=(*pM)(0,3)*v.x+(*pM)(1,3)*v.y+(*pM)(2,3)*v.z+(*pM)(3,3)*v.w;
return pOut;
#endif
return NULL;
}
};
----实矩阵乘法----
-3,1,-1,
-7,5,-1,
-6,6,-2,
-3,1,-1,
-7,5,-1,
-6,6,-2,
8,-4,4,
-8,12,4,
-12,12,4,
----实矩阵求逆----
-0.25,-0.25,0.25,
-0.5,3.47694e-008,0.25,
-0.75,0.75,-0.5,
-3,1,-1,
-7,5,-1,
-6,6,-2,
----实矩阵求行列式的值----
16
16
// 矩阵标准API(实矩阵相乘,Bsdet求实方阵的行列式值,求实方阵的逆)的C++封装,一个可复用的C++ 3阶方阵类
//
#include"stdafx.h"
#include<cmath>
#include<iostream>
using namespace std;
template<class T>
void __stdcall Brmul(T *a,T *b,int m,int n,int k,T *c)
{
 int i,j,l,u;
 for (i=0; i<=m-1; i++)
  for (j=0; j<=k-1; j++)
  {
   u=i*k+j;
   c[u]=0.0;
   for(l=0; l<=n-1; l++)
    c[u]=c[u]+a[i*n+l]*b[l*k+j];
  }
  return;
}
template<class T>
//第一个参数是输入输出参数
T __stdcall Bsdet(T *a,int n)
{
 int i,j,k,is,js,l,u,v;
 T f,det,q,d;
 f=1.0; det=1.0;
 for (k=0; k<=n-2; k++)
 {
  q=0.0;
  for (i=k; i<=n-1; i++)
   for (j=k; j<=n-1; j++)
   {
    l=i*n+j;
    d=fabs(a[l]);
    if (d>q)
    {
     q=d;
     is=i;
     js=j;
    }
   }
   if(q+1.0==1.0)
   {
    det=0.0;
    return(det);
   }
   if(is!=k)
   {
    f=-f;
    for (j=k; j<=n-1; j++)
    {
     u=k*n+j;
     v=is*n+j;
     d=a[u];
     a[u]=a[v];
     a[v]=d;
    }
   }
   if(js!=k)
   {
    f=-f;
    for (i=k; i<=n-1; i++)
    {
     u=i*n+js;
     v=i*n+k;
     d=a[u];
     a[u]=a[v];
     a[v]=d;
    }
   }
   l=k*n+k;
   det=det*a[l];
   for (i=k+1; i<=n-1; i++)
   {
    d=a[i*n+k]/a[l];
    for (j=k+1; j<=n-1; j++)
    {
     u=i*n+j;
     a[u]=a[u]-d*a[k*n+j];
    }
   }
 }
 det=f*det*a[n*n-1];
 return(det);
}
template<class T>
int __stdcall Brinv(T *a,int n)
{
 int *is,*js,i,j,k,l,u,v;
 T d,p;
 is=(int*)malloc(n*sizeof(int));
 js=(int*)malloc(n*sizeof(int));
 for (k=0; k<=n-1; k++)
 {
  d=0.0;
  for (i=k; i<=n-1; i++)
   for (j=k; j<=n-1; j++)
   {
    l=i*n+j;
    p=fabs(a[l]);
    if (p>d)
    {
     d=p;
     is[k]=i;
     js[k]=j;
    }
   }
   if (d+1.0==1.0)
   {
    free(is);
    free(js);
    printf("err**not inv\n");
    return(0);
   }
   if (is[k]!=k)
    for (j=0; j<=n-1; j++)
    {
     u=k*n+j;
     v=is[k]*n+j;
     p=a[u];
     a[u]=a[v];
     a[v]=p;
    }
    if (js[k]!=k)
     for (i=0; i<=n-1; i++)
     {
      u=i*n+k;
      v=i*n+js[k];
      p=a[u];
      a[u]=a[v];
      a[v]=p;
     }
     l=k*n+k;
     a[l]=1.0/a[l];
     for (j=0; j<=n-1; j++)
      if (j!=k)
      {
       u=k*n+j;
       a[u]=a[u]*a[l];
      }
      for (i=0; i<=n-1; i++)
       if (i!=k)
        for (j=0; j<=n-1; j++)
         if (j!=k)
         {
          u=i*n+j;
          a[u]=a[u]-a[i*n+k]*a[k*n+j];
         }
         for (i=0; i<=n-1; i++)
          if (i!=k)
          {
           u=i*n+k;
           a[u]=-a[u]*a[l];
          }
 }
 for(k=n-1; k>=0; k--)
 {
  if (js[k]!=k)
   for (j=0; j<=n-1; j++)
   {
    u=k*n+j;
    v=js[k]*n+j;
    p=a[u];
    a[u]=a[v];
    a[v]=p;
   }
   if (is[k]!=k)
    for (i=0; i<=n-1; i++)
    {
     u=i*n+k;
     v=i*n+is[k];
     p=a[u];
     a[u]=a[v];
     a[v]=p;
    }
 }
 free(is);
 free(js);
 return(1);
}
 
// From gamasutra. This file may follow different licence features.
// A floating point number
//
typedef float SCALAR;
//
// A 3D vector
//
class VECTOR
{
public:
 SCALAR x,y,z; //x,y,z coordinates
public:
 VECTOR() : x(0), y(0), z(0) {}
 VECTOR( const SCALAR& a, const SCALAR& b, const SCALAR& c ) : x(a), y(b), z(c) {}
 //index a component
 //NOTE: returning a reference allows
 //you to assign the indexed element
 SCALAR& operator [] ( const long i )
 {
  return *((&x) + i);
 }
//compare

这篇关于一个可复用的C++ 3阶实方阵类和4阶实方阵类(兼容与扩展了DX中的4阶实方阵类);四元数(quaternion)模板类的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986525

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意