数据可视化(十):Pandas数据分析师职位信息表分析——箱线图、水平柱状图、学历城市双维分析等高级操作

本文主要是介绍数据可视化(十):Pandas数据分析师职位信息表分析——箱线图、水平柱状图、学历城市双维分析等高级操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Tips:"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起分享这份快乐吧😊!

喜欢我的博客的话,记得点个红心❤️和小关小注哦!您的支持是我创作的动力!数据源存放在我的资源下载区啦!

数据可视化(十):Pandas数据分析师职位信息表分析——箱线图、水平柱状图、学历城市双维分析等高级操作

目录

  • 数据可视化(十):Pandas数据分析师职位信息表分析——箱线图、水平柱状图、学历城市双维分析等高级操作
    • 案例二:数据分析师职位信息表分析
      • 问题1:将firstType列的 空值 填充为 "未知"
      • 问题2:处理positionId列重复值(按照positionId去重),保留第一次出现的重复行
      • 问题3:获取平均工资,形成新列 average_salary
      • 问题4:城市分布情况画出水平柱状图对比
      • 问题5:平均薪资概率图(将平均薪资分成50个柱子)
      • 问题6:按城市画出平均工资箱线图
      • 问题7:按学历画出平均工资箱线图
      • 问题8:按工作年限画出平均工资箱线图
      • 问题9:学历、城市双维度画出平均工资箱线图
      • 问题10:直方图显示各个城市薪资最小值 最大值 平均值
      • 问题11:直方图显示各个城市各学历平均值
      • 问题12: 对薪资划分等级,然后作堆积百分比柱形图
      • 问题13:将positionLables职位标签信息作为词云显示

本次作业绘图可采用seaborn、matplotlib库或者pandas内置绘图功能

案例二:数据分析师职位信息表分析

# 导入数据df = pd.read_csv('data/data_analyst.csv',encoding='gb2312')
df.sample(5)
# 数据清洗# 查看空值
df.isnull().sum()

在这里插入图片描述

问题1:将firstType列的 空值 填充为 “未知”

# 处理空值display( df.firstType.unique() )
df['firstType'].fillna("未知", inplace=True)
df.fillna("未知", inplace=True)
# 处理重复值len(df.positionId)-df.positionId.nunique()

在这里插入图片描述

问题2:处理positionId列重复值(按照positionId去重),保留第一次出现的重复行

# 去重df_ = df.drop_duplicates(subset='positionId', keep='first')#按照positionId去重,保留第一次出现的重复行
len(df_.positionId)-df_.positionId.nunique()
# 取最低工资和最高工资 转换
# salary这一列是字符串
df_['salary'].sample(10)
# salary中有  25k以上 这样没有上限的字眼,需要改成  25k-无上限# df.query('salary.str.contains("以上")', engine='python')['salary'].map(lambda x:x[:-2]+'-无上限')df_.query('salary.str.contains("以")', engine='python')['salary']

在这里插入图片描述

# 注意,带有以上以下的没有最高最低,为了计算平均工资,最小最大值都是一个值
def get_low_saraly(s):if "以" in s:return eval(s[:-3])*1000else:lt = s.split('-')return eval(lt[0][:-1])*1000def get_high_saraly(s):if "以" in s:return eval(s[:-3])*1000else:lt = s.split('-')return eval(lt[1][:-1])*1000df_.loc[:, 'low_salary'] = df_['salary'].map(get_low_saraly)
df_.loc[:, 'high_salary'] = df_['salary'].map(get_high_saraly)
df_.sample()

在这里插入图片描述

问题3:获取平均工资,形成新列 average_salary

# 获取平均工资df_.loc[:, 'average_salary'] = (df_['low_salary'] + df_['high_salary'])/2
df_.sample(5)

在这里插入图片描述

问题4:城市分布情况画出水平柱状图对比

# 城市分布情况s = df_.city.value_counts()
display(s)# 画出水平柱状图对比plt.barh(s.index, width=s.values, height=0.5)
plt.xlabel('职位数量')
plt.ylabel('城市')
plt.title('职位城市分布')
plt.show()

在这里插入图片描述

问题5:平均薪资概率图(将平均薪资分成50个柱子)

# 平均薪资概率图# 将平均薪资分成50个柱子s = df_['average_salary']plt.hist(s.values, bins=50, color='r')
plt.xlabel('平均薪资')
plt.ylabel('职位数量')
plt.title('平均薪资概率图')
plt.show()

在这里插入图片描述

问题6:按城市画出平均工资箱线图

# 按城市df_1 = df_[ ['city', 'average_salary']]
# 画布大一些
df_1.boxplot(by='city', figsize=(8,8))# or
groups = df_.groupby('city')
fig = plt.figure(figsize=(8,8))
labels = []
values = []
for g in groups:labels.append(g[0])values.append(g[1].average_salary.values)
plt.boxplot(values, labels=labels)
plt.show()

在这里插入图片描述

问题7:按学历画出平均工资箱线图

# 按学历df_1 = df_[ ['education', 'average_salary']]
df_1.boxplot(by='education', figsize=(8,8))# or
groups = df_.groupby('education')
labels = []
values = []
for g in groups:labels.append(g[0])values.append(g[1].average_salary.values)
fig = plt.figure(figsize=(8,8))
plt.boxplot(values, labels=labels)
plt.show()

在这里插入图片描述

问题8:按工作年限画出平均工资箱线图

# 按工作年限df_1 = df_[ ['workYear', 'average_salary']]
df_1.boxplot(by='workYear', figsize=(8,8))# or
groups = df_.groupby('workYear')
labels = []
values = []
for g in groups:labels.append(g[0])values.append(g[1].average_salary.values)
fig = plt.figure(figsize=(8,8))
plt.boxplot(values, labels=labels)
plt.show()

在这里插入图片描述

问题9:学历、城市双维度画出平均工资箱线图

# 学历、城市双维度df_1 = df_[ ['city', 'education', 'average_salary']]
df_1.boxplot(by=['city', 'education'], figsize=(24,8), rot=90)# or
groups = df_.groupby(['city', 'education'])
labels = []
values = []
for g in groups:labels.append(g[0])values.append(g[1].average_salary.values)
fig = plt.figure(figsize=(24,8))
plt.boxplot(values, labels=labels)
plt.xticks(rotation=90)
plt.show()

在这里插入图片描述

问题10:直方图显示各个城市薪资最小值 最大值 平均值

# 直方图显示各个城市薪资最小值 最大值 平均值
# 采用dataframe绘制直方图方便!df_[['low_salary', 'high_salary', 'average_salary', 'city']].groupby('city').mean().plot.bar()

在这里插入图片描述

问题11:直方图显示各个城市各学历平均值

# 直方图显示各个城市各学历平均值df_[['city', 'education', 'average_salary']].groupby(['city','education']).\
mean().unstack().plot.bar(figsize=(15,10))

在这里插入图片描述

问题12: 对薪资划分等级,然后作堆积百分比柱形图

# 对薪资划分等级,然后作堆积百分比柱形图bins=[0, 3000, 5000, 10000, 15000, 20000, 30000, 100000]
level=['0-3','3-5','5-10','10-15','15-20','20-30','30+']
df_['level'] = pd.cut(df_['average_salary'], bins=bins, labels=level)
df_[['average_salary', 'level']]
df_2 = df_.groupby(['city', 'level']).average_salary.count().unstack() #分组计算职位数量
display(df_2)
df_3 = df_2.apply(lambda x:x/x.sum(), axis=1) # 改成占比
display(df_3)
df_3.plot.bar(stacked=True, figsize=(15, 8))

在这里插入图片描述
在这里插入图片描述

问题13:将positionLables职位标签信息作为词云显示

# 将positionLables职位标签信息作为词云显示from wordcloud import WordCloud
import jieba
from PIL import Image as img#s = df_['positionLables'].dropna().str[1:-1].replace(" ","")s = df_['positionLables'].sum()
words = dict()
lt = jieba.lcut(s)
for word in lt:if len(word)>=2:words[word] = words.get(word, 0) + 1
#display(words)
wordcloud = WordCloud(font_path='assets//SimHei.ttf', width=1200, height=800, background_color='white', mask=np.array(img.open('assets/myimg.jpg')))
wordcloud.fit_words(words)
plt.figure(figsize=(15,15))
axs = plt.imshow(wordcloud)#正常显示词云
plt.axis('off')#关闭坐标轴
plt.show()

在这里插入图片描述

这篇关于数据可视化(十):Pandas数据分析师职位信息表分析——箱线图、水平柱状图、学历城市双维分析等高级操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986502

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt