数字水印 | Python 基于离散小波变换 DWT 的图像水印嵌入(下)

2024-05-13 17:04

本文主要是介绍数字水印 | Python 基于离散小波变换 DWT 的图像水印嵌入(下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍍原文: 基于 dwt (离散小波变换) 实现彩色图像水印嵌入部分_2.0

🍍写在前面: 本文在原文的基础上进行了代码补全。



正文

修改了尺寸变换导致的图像失真问题,同时简化了部分代码。

在这里插入图片描述

效果确实很好😉



1 通道调序的简化

将之前的两句代码简化为了一句代码:

Img_path = 'white_bear.jpg'
Img = cv2.imread(Img_path)
Img = Img[:, :, [2, 1, 0]]  # 调整通道顺序

这里的 I m g \mathsf{Img} Img 是一个三维数组,其中每个维度分别代表:

  • 第一个维度是图像的高度(或行数)
  • 第二个维度是图像的宽度(或列数)
  • 第三个维度是图像的通道数

由于 c v 2 \mathsf{cv2} cv2 读取图像通道的顺序是 B , G , R \mathsf{B,G,R} B,G,R,因此上述代码将其更改为 R , G , B \mathsf{R,G,B} R,G,B 顺序。



2 多级小波变换

# 水印图像一级小波变换
coeffs1 = pywt.wavedec2(waterImg_new, 'db2', level=1)
[ca, (ch1, cv1, cd1)] = coeffs1# 原始图像B通道三级小波变换
coeffs2 = pywt.wavedec2(b, 'db2', level=3)
[cA, (cH3, cV3, cD3), (cH2, cV2, cD2), (cH1, cV1, cD1)] = coeffs2
  • 'db2':是选定的小波类型。这里是 D a u b e c h i e s \mathsf{Daubechies} Daubechies 长度为 2 的整数系小波。
  • level=3:是小波分解的级别。级别决定了分解的深度,也就是小波变换的层数。


3 图像尺寸裁剪

由嵌入公式可以看出, c A \mathsf{cA} cA 等的形状要和 c a \mathsf{ca} ca 等的形状相同,否则无法相加:

cA = cA + ca * a1
cH3 = cH3 + ch1 * a2
cV3 = cV3 + cv1 * a3
cD3 = cD3 + cd1 * a4

而每做一次小波变换,图像的尺寸都会减小到原本的 1 / 2 1/2 1/2

[cA, (cH3, cV3, cD3), (cH2, cV2, cD2), (cH1, cV1, cD1)] = coeffs2

其中 c H 3 \mathsf{cH3} cH3 c H 2 \mathsf{cH2} cH2 1 / 2 1/2 1/2 c H 2 \mathsf{cH2} cH2 c H 1 \mathsf{cH1} cH1 1 / 2 1/2 1/2。因此,定义了以下三个函数为图像计算尺寸。




m a x R C \mathsf{maxRC} maxRC 函数比较原始图像的长度和宽度,并返回其中的较大值作为原始图像的新尺寸:

def maxRC(Img_path):Img = cv2.imread(Img_path, 0)R = Img.shape[0]C = Img.shape[1]RC_new = max(R, C)return RC_new

裁剪后的原始图像比例为 1 : 1 1:1 1:1,且边长为 m a x ( R , C ) \mathsf{max(R, C)} max(R,C)

i n c h e s 3 \mathsf{inches3} inches3 函数计算水印图像的新尺寸,它需要是原始图像的 ( 1 / 2 ) t i m e s \mathsf{(1/2)^{times}} (1/2)times 倍:

def inches3(num, times):for i in range(times):num = round((num/2 + 1))return numdef Icm(RC_new):rc_new = inches3(RC_new, 2)return rc_new

其中, t i m e s = 3 − 1 = 2 \mathsf{times}=3-1=2 times=31=2 即原始图像的小波变换级别减去水印图像的小波变换级别。

个人理解:原始图像的小波变换级别是 3 3 3,水印图像的小波变换级别是 1 1 1。要使 c A \mathsf{cA} cA 等和 c a \mathsf{ca} ca 等能够相加,那么需要它们的尺寸相同。参考下图,根据 c A \mathsf{cA} cA 的尺寸,以及水印图像的小波变换级别是 1 1 1 这一条件,去倒推水印图像的新尺寸应该是多少。

在这里插入图片描述



4 完整代码

i n c h e s 3 \mathsf{inches3} inches3 函数和 I c m \mathsf{Icm} Icm 函数应该还可以简化,名字也是取得莫名其妙,可以自己改一下😇

import cv2
import pywt
import numpy as np
from PIL import Image
from matplotlib import pyplot as pltdef arnold(img, s):r, c, d = img.shapeimg = img[:, :, 0]p = np.zeros((r, c), np.uint8)a = 1b = 1for _s in range(s):for i in range(r):for j in range(c):x = (i + b * j) % ry = (a * i + (a * b + 1) * j) % cp[x, y] = img[i, j]img = np.copy(p)return pdef inches3(num, times):for i in range(times):num = round((num/2 + 1))return numdef Icm(RC_new):rc_new = inches3(RC_new, 2)return rc_newdef maxRC(Img_path):Img = cv2.imread(Img_path, 0)R = Img.shape[0]C = Img.shape[1]RC_new = max(R, C)return RC_new# 读取图像
Img_path = 'white_bear.jpg'
waterImg_path = 'uestc_logo.jpg'
Img = cv2.imread(Img_path)
Img = Img[:, :, [2, 1, 0]]water = cv2.imread(waterImg_path)  # 只是为了后面展示用
water = water[:, :, [2, 1, 0]]waterImg = cv2.imread(waterImg_path)
waterImg = waterImg[:, :, [2, 1, 0]]
waterImg = arnold(waterImg, 5)# 修改原始图像的尺寸
RC_new = maxRC(Img_path)
Img_new = cv2.resize(Img, (RC_new, RC_new))
(r, g, b) = cv2.split(Img_new)# 修改水印图像的尺寸
rc_new = Icm(RC_new)
waterImg_new = cv2.resize(waterImg, (rc_new, rc_new))# 水印图像一级小波变换
coeffs1 = pywt.wavedec2(waterImg_new, 'db2', level=1)
[ca, (ch1, cv1, cd1)] = coeffs1# 原始图像B通道三级小波变换
coeffs2 = pywt.wavedec2(b, 'db2', level=3)
[cA, (cH3, cV3, cD3), (cH2, cV2, cD2), (cH1, cV1, cD1)] = coeffs2# 自定义嵌入系数
a1 = 0.1
a2 = 0.2
a3 = 0.1
a4 = 0.1cA = cA + ca * a1
cH3 = cH3 + ch1 * a2
cV3 = cV3 + cv1 * a3
cD3 = cD3 + cd1 * a4# 对小波系数进行逆变换
newImg = pywt.waverec2([cA, (cH3, cV3, cD3), (cH2, cV2, cD2), (cH1, cV1, cD1)], 'db2')merged = np.ones(Img_new.shape, dtype=np.uint8)
merged[:, :, 0] = r
merged[:, :, 1] = g
merged[:, :, 2] = newImgImg_water = Image.fromarray(merged)
Img_water = Img_water.resize((808, 808), Image.LANCZOS)  # 重新调整大小,抗锯齿#  画图
plt.subplot(2, 2, 1)
plt.title("Watermark", fontsize=12, loc="center")
plt.axis('off')
plt.imshow(water)plt.subplot(2, 2, 2)
plt.title("Arnold Watermark", fontsize=12, loc="center")
plt.axis('off')
plt.imshow(waterImg)plt.subplot(2, 2, 3)
plt.title("Original", fontsize=12, loc="center")
plt.axis('off')
plt.imshow(Img)plt.subplot(2, 2, 4)
plt.title("Watermarked", fontsize=12, loc="center")
plt.axis('off')
plt.imshow(merged)plt.savefig('test.jpg', dpi=400)
plt.show()


这篇关于数字水印 | Python 基于离散小波变换 DWT 的图像水印嵌入(下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986302

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点