【python量化交易】qteasy使用教程07——创建更加复杂的自定义交易策略

本文主要是介绍【python量化交易】qteasy使用教程07——创建更加复杂的自定义交易策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

创建更加复杂的自定义交易策略

  • 使用交易策略类,创建更复杂的自定义策略
    • 开始前的准备工作
    • 本节的目标
    • 继承Strategy类,创建一个复杂的多因子选股策略
      • 策略和回测参数配置,并开始回测
    • 本节回顾

使用交易策略类,创建更复杂的自定义策略

qteasy是一个完全本地化部署和运行的量化交易分析工具包,Github地址在这里,并且可以通过pip安装:

$ pip install qteasy -U

qteasy具备以下功能:

  • 金融数据的获取、清洗、存储以及处理、可视化、使用
  • 量化交易策略的创建,并提供大量内置基本交易策略
  • 向量化的高速交易策略回测及交易结果评价
  • 交易策略参数的优化以及评价
  • 交易策略的部署、实盘运行

通过本系列教程,您将会通过一系列的实际示例,充分了解qteasy的主要功能以及使用方法。

开始前的准备工作

在开始本节教程前,请先确保您已经掌握了下面的内容:

  • 安装、配置qteasy —— QTEASY教程1
  • 设置了一个本地数据源,并已经将足够的历史数据下载到本地——QTEASY教程2
  • 学会创建交易员对象,使用内置交易策略,——QTEASY教程3
  • 学会使用混合器,将多个简单策略混合成较为复杂的交易策略——QTEASY教程4
  • 了解自定策略的基础——QTEASY教程5 ,QTEASY教程6

在QTEASY文档中,还能找到更多关于使用内置交易策略、创建自定义策略等等相关内容。对qteasy的基本使用方法还不熟悉的同学,可以移步那里查看更多详细说明。

qteasy的内核被设计为一个兼顾高速执行以及足够的灵活性的框架,理论上您可以实现您所设想的任何类型的交易策略。

同时,qteasy的回测框架也做了相当多的特殊设计,可以完全避免您无意中在交易策略中导入"未来函数",确保您的交易策略在回测时完全基于过去的数据,同时也使用了很多预处理技术以及JIT技术对内核关键函数进行了编译,以实现不亚于C语言的运行速度。

不过,为了实现理论上无限可能的交易策略,仅仅使用内置交易策略以及策略混合就不一定够用了,一些特定的交易策略,或者一些特别复杂的交易策略是无法通过内置策略混合而成的,这就需要我们使用qteasy提供的Strategy基类,基于一定的规则创建一个自定义交易策略了。

本节的目标

在本节中,我们将介绍qteasy的交易策略基类,通过一个具体的例子详细讲解如何基于这几个基类,创建一个只属于您自己的交易策略。为了说明

继承Strategy类,创建一个复杂的多因子选股策略

在这个例子中,我们使用

import qteasy as qt
import numpy as npdef market_value_weighted(stock_return, mv, mv_cat, bp_cat, mv_target, bp_target):""" 根据mv_target和bp_target计算市值加权收益率,在策略中调用此函数计算加权收益率"""sel = (mv_cat == mv_target) & (bp_cat == bp_target)mv_total = np.nansum(mv[sel])mv_weight = mv / mv_totalreturn_total = np.nansum(stock_return[sel] * mv_weight[sel])return return_totalclass MultiFactors(qt.FactorSorter):""" 开始定义交易策略"""def __init__(self, pars: tuple = (0.5, 0.3, 0.7)):"""交易策略的初始化参数"""super().__init__(pars=pars,  par_count=3,  # 策略的可调参数有三个par_types=['float', 'float', 'float'],  # 参数1:大小市值分类界限,参数2:小/中bp分界线,参数3,中/大bp分界线par_range=[(0.01, 0.99), (0.01, 0.49), (0.50, 0.99)],name='MultiFactor',description='根据Fama-French三因子回归模型估算HS300成分股的alpha值选股',strategy_run_timing='close',  # 在周期结束(收盘)时运行strategy_run_freq='m',  # 每月执行一次选股(每周或每天都可以)strategy_data_types='pb, total_mv, close',  # 执行选股需要用到的股票数据data_freq='d',  # 数据频率(包括股票数据和参考数据)window_length=20,  # 回测时的视窗长度为20天use_latest_data_cycle=True,  # 设置使用最新的数据reference_data_types='close-000300.SH',  # 选股需要用到市场收益率,使用沪深300指数的收盘价计算,因此设置HS300指数的收盘价作为参考数据传入max_sel_count=10,  # 最多选出10支股票sort_ascending=True,  # 选择因子最小的股票condition='less',  # 仅选择因子小于某个值的股票lbound=0,  # 仅选择因子小于0的股票ubound=0,  # 仅选择因子小于0的股票 )def realize(self, h, **kwargs):""" 策略的选股逻辑在realize()函数中定义"""size_gate_percentile, bp_small_percentile, bp_large_percentile = self.pars# 读取投资组合的数据PB和total_MV的最新值pb = h[:, -1, 0]  # 当前所有股票的PB值mv = h[:, -1, 1]  # 当前所有股票的市值pre_close = h[:, -2, 2]  # 当前所有股票的前收盘价close = h[:, -1, 2]  # 当前所有股票的最新收盘价# 读取参考数据(r)market_pre_close = r[-2, 0]  # HS300的昨收价market_close = r[-1, 0]  # HS300的收盘价# 计算账面市值比,为pb的倒数bp = pb ** -1# 计算市值的50%的分位点,用于后面的分类size_gate = np.nanquantile(mv, size_gate_percentile)# 计算账面市值比的30%和70%分位点,用于后面的分类bm_30_gate = np.nanquantile(bp, bp_small_percentile)bm_70_gate = np.nanquantile(bp, bp_large_percentile)# 计算每只股票的当日收益率stock_return = pre_close / close - 1# 根据每只股票的账面市值比和市值,给它们分配bp分类和mv分类# 市值小于size_gate的cat为1,否则为2mv_cat = np.ones_like(mv)mv_cat += (mv > size_gate).astype('float')# bp小于30%的cat为1,30%~70%之间为2,大于70%为3bp_cat = np.ones_like(bp)bp_cat += (bp > bm_30_gate).astype('float')bp_cat += (bp > bm_70_gate).astype('float')# 获取小市值组合的市值加权组合收益率smb_s = (market_value_weighted(stock_return, mv, mv_cat, bp_cat, 1, 1) +market_value_weighted(stock_return, mv, mv_cat, bp_cat, 1, 2) +market_value_weighted(stock_return, mv, mv_cat, bp_cat, 1, 3)) / 3# 获取大市值组合的市值加权组合收益率smb_b = (market_value_weighted(stock_return, mv, mv_cat, bp_cat, 2, 1) +market_value_weighted(stock_return, mv, mv_cat, bp_cat, 2, 2) +market_value_weighted(stock_return, mv, mv_cat, bp_cat, 2, 3)) / 3smb = smb_s - smb_b# 获取大账面市值比组合的市值加权组合收益率hml_b = (market_value_weighted(stock_return, mv, mv_cat, bp_cat, 1, 3) +market_value_weighted(stock_return, mv, mv_cat, bp_cat, 2, 3)) / 2# 获取小账面市值比组合的市值加权组合收益率hml_s = (market_value_weighted(stock_return, mv, mv_cat, bp_cat, 1, 1) +market_value_weighted(stock_return, mv, mv_cat, bp_cat, 2, 1)) / 2hml = hml_b - hml_s# 计算市场收益率market_return = market_pre_close / market_close - 1coff_pool = []# 对每只股票进行回归获取其alpha值for rtn in stock_return:x = np.array([[market_return, smb, hml, 1.0]])y = np.array([[rtn]])# OLS估计系数coff = np.linalg.lstsq(x, y)[0][3][0]coff_pool.append(coff)# 以alpha值为股票组合的选股因子执行选股factors = np.array(coff_pool)return factors

策略和回测参数配置,并开始回测

定义好上面的策略之后,就可以开始进行回测了,我们需要在qteasy中创建一个交易员对象,操作前面创建的策略:

shares = qt.filter_stock_codes(index='000300.SH', date='20190501')  # 选择股票池,包括2019年5月以来所有沪深300指数成分股
# 设置回测的运行参数
qt.config(mode=1,  # mode=1表示回测模式invest_start='20160405',  # 回测开始日期invest_end='20210201',  # 回测结束日期asset_type='E',  # 投资品种为股票asset_pool=shares,  # shares包含同期沪深300指数的成份股trade_batch_size=100,  # 买入批量为100股sell_batch_size=1,  # 卖出批量为整数股trade_log=True,  # 生成交易记录)#  开始策略的回测alpha = MultiFactors()  # 生成一个交易策略的实例,名为alpha
op = qt.Operator(alpha, signal_type='PT')  # 生成交易员对象,操作alpha策略,交易信号的类型为‘PT',意思是生成的信号代表持仓比例,例如1代表100%持有股票,0.35表示持有股票占资产的35%
op.op_type = 'stepwise'  # 运行模式为步进模式
op.set_blender('1.0*s0', "close")  # 交易策略混合方式,只有一个策略,不需要混合
op.run()  # 开始运行

在这里插入图片描述

本节回顾

这篇关于【python量化交易】qteasy使用教程07——创建更加复杂的自定义交易策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984871

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)