【python量化交易】qteasy使用教程07——创建更加复杂的自定义交易策略

本文主要是介绍【python量化交易】qteasy使用教程07——创建更加复杂的自定义交易策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

创建更加复杂的自定义交易策略

  • 使用交易策略类,创建更复杂的自定义策略
    • 开始前的准备工作
    • 本节的目标
    • 继承Strategy类,创建一个复杂的多因子选股策略
      • 策略和回测参数配置,并开始回测
    • 本节回顾

使用交易策略类,创建更复杂的自定义策略

qteasy是一个完全本地化部署和运行的量化交易分析工具包,Github地址在这里,并且可以通过pip安装:

$ pip install qteasy -U

qteasy具备以下功能:

  • 金融数据的获取、清洗、存储以及处理、可视化、使用
  • 量化交易策略的创建,并提供大量内置基本交易策略
  • 向量化的高速交易策略回测及交易结果评价
  • 交易策略参数的优化以及评价
  • 交易策略的部署、实盘运行

通过本系列教程,您将会通过一系列的实际示例,充分了解qteasy的主要功能以及使用方法。

开始前的准备工作

在开始本节教程前,请先确保您已经掌握了下面的内容:

  • 安装、配置qteasy —— QTEASY教程1
  • 设置了一个本地数据源,并已经将足够的历史数据下载到本地——QTEASY教程2
  • 学会创建交易员对象,使用内置交易策略,——QTEASY教程3
  • 学会使用混合器,将多个简单策略混合成较为复杂的交易策略——QTEASY教程4
  • 了解自定策略的基础——QTEASY教程5 ,QTEASY教程6

在QTEASY文档中,还能找到更多关于使用内置交易策略、创建自定义策略等等相关内容。对qteasy的基本使用方法还不熟悉的同学,可以移步那里查看更多详细说明。

qteasy的内核被设计为一个兼顾高速执行以及足够的灵活性的框架,理论上您可以实现您所设想的任何类型的交易策略。

同时,qteasy的回测框架也做了相当多的特殊设计,可以完全避免您无意中在交易策略中导入"未来函数",确保您的交易策略在回测时完全基于过去的数据,同时也使用了很多预处理技术以及JIT技术对内核关键函数进行了编译,以实现不亚于C语言的运行速度。

不过,为了实现理论上无限可能的交易策略,仅仅使用内置交易策略以及策略混合就不一定够用了,一些特定的交易策略,或者一些特别复杂的交易策略是无法通过内置策略混合而成的,这就需要我们使用qteasy提供的Strategy基类,基于一定的规则创建一个自定义交易策略了。

本节的目标

在本节中,我们将介绍qteasy的交易策略基类,通过一个具体的例子详细讲解如何基于这几个基类,创建一个只属于您自己的交易策略。为了说明

继承Strategy类,创建一个复杂的多因子选股策略

在这个例子中,我们使用

import qteasy as qt
import numpy as npdef market_value_weighted(stock_return, mv, mv_cat, bp_cat, mv_target, bp_target):""" 根据mv_target和bp_target计算市值加权收益率,在策略中调用此函数计算加权收益率"""sel = (mv_cat == mv_target) & (bp_cat == bp_target)mv_total = np.nansum(mv[sel])mv_weight = mv / mv_totalreturn_total = np.nansum(stock_return[sel] * mv_weight[sel])return return_totalclass MultiFactors(qt.FactorSorter):""" 开始定义交易策略"""def __init__(self, pars: tuple = (0.5, 0.3, 0.7)):"""交易策略的初始化参数"""super().__init__(pars=pars,  par_count=3,  # 策略的可调参数有三个par_types=['float', 'float', 'float'],  # 参数1:大小市值分类界限,参数2:小/中bp分界线,参数3,中/大bp分界线par_range=[(0.01, 0.99), (0.01, 0.49), (0.50, 0.99)],name='MultiFactor',description='根据Fama-French三因子回归模型估算HS300成分股的alpha值选股',strategy_run_timing='close',  # 在周期结束(收盘)时运行strategy_run_freq='m',  # 每月执行一次选股(每周或每天都可以)strategy_data_types='pb, total_mv, close',  # 执行选股需要用到的股票数据data_freq='d',  # 数据频率(包括股票数据和参考数据)window_length=20,  # 回测时的视窗长度为20天use_latest_data_cycle=True,  # 设置使用最新的数据reference_data_types='close-000300.SH',  # 选股需要用到市场收益率,使用沪深300指数的收盘价计算,因此设置HS300指数的收盘价作为参考数据传入max_sel_count=10,  # 最多选出10支股票sort_ascending=True,  # 选择因子最小的股票condition='less',  # 仅选择因子小于某个值的股票lbound=0,  # 仅选择因子小于0的股票ubound=0,  # 仅选择因子小于0的股票 )def realize(self, h, **kwargs):""" 策略的选股逻辑在realize()函数中定义"""size_gate_percentile, bp_small_percentile, bp_large_percentile = self.pars# 读取投资组合的数据PB和total_MV的最新值pb = h[:, -1, 0]  # 当前所有股票的PB值mv = h[:, -1, 1]  # 当前所有股票的市值pre_close = h[:, -2, 2]  # 当前所有股票的前收盘价close = h[:, -1, 2]  # 当前所有股票的最新收盘价# 读取参考数据(r)market_pre_close = r[-2, 0]  # HS300的昨收价market_close = r[-1, 0]  # HS300的收盘价# 计算账面市值比,为pb的倒数bp = pb ** -1# 计算市值的50%的分位点,用于后面的分类size_gate = np.nanquantile(mv, size_gate_percentile)# 计算账面市值比的30%和70%分位点,用于后面的分类bm_30_gate = np.nanquantile(bp, bp_small_percentile)bm_70_gate = np.nanquantile(bp, bp_large_percentile)# 计算每只股票的当日收益率stock_return = pre_close / close - 1# 根据每只股票的账面市值比和市值,给它们分配bp分类和mv分类# 市值小于size_gate的cat为1,否则为2mv_cat = np.ones_like(mv)mv_cat += (mv > size_gate).astype('float')# bp小于30%的cat为1,30%~70%之间为2,大于70%为3bp_cat = np.ones_like(bp)bp_cat += (bp > bm_30_gate).astype('float')bp_cat += (bp > bm_70_gate).astype('float')# 获取小市值组合的市值加权组合收益率smb_s = (market_value_weighted(stock_return, mv, mv_cat, bp_cat, 1, 1) +market_value_weighted(stock_return, mv, mv_cat, bp_cat, 1, 2) +market_value_weighted(stock_return, mv, mv_cat, bp_cat, 1, 3)) / 3# 获取大市值组合的市值加权组合收益率smb_b = (market_value_weighted(stock_return, mv, mv_cat, bp_cat, 2, 1) +market_value_weighted(stock_return, mv, mv_cat, bp_cat, 2, 2) +market_value_weighted(stock_return, mv, mv_cat, bp_cat, 2, 3)) / 3smb = smb_s - smb_b# 获取大账面市值比组合的市值加权组合收益率hml_b = (market_value_weighted(stock_return, mv, mv_cat, bp_cat, 1, 3) +market_value_weighted(stock_return, mv, mv_cat, bp_cat, 2, 3)) / 2# 获取小账面市值比组合的市值加权组合收益率hml_s = (market_value_weighted(stock_return, mv, mv_cat, bp_cat, 1, 1) +market_value_weighted(stock_return, mv, mv_cat, bp_cat, 2, 1)) / 2hml = hml_b - hml_s# 计算市场收益率market_return = market_pre_close / market_close - 1coff_pool = []# 对每只股票进行回归获取其alpha值for rtn in stock_return:x = np.array([[market_return, smb, hml, 1.0]])y = np.array([[rtn]])# OLS估计系数coff = np.linalg.lstsq(x, y)[0][3][0]coff_pool.append(coff)# 以alpha值为股票组合的选股因子执行选股factors = np.array(coff_pool)return factors

策略和回测参数配置,并开始回测

定义好上面的策略之后,就可以开始进行回测了,我们需要在qteasy中创建一个交易员对象,操作前面创建的策略:

shares = qt.filter_stock_codes(index='000300.SH', date='20190501')  # 选择股票池,包括2019年5月以来所有沪深300指数成分股
# 设置回测的运行参数
qt.config(mode=1,  # mode=1表示回测模式invest_start='20160405',  # 回测开始日期invest_end='20210201',  # 回测结束日期asset_type='E',  # 投资品种为股票asset_pool=shares,  # shares包含同期沪深300指数的成份股trade_batch_size=100,  # 买入批量为100股sell_batch_size=1,  # 卖出批量为整数股trade_log=True,  # 生成交易记录)#  开始策略的回测alpha = MultiFactors()  # 生成一个交易策略的实例,名为alpha
op = qt.Operator(alpha, signal_type='PT')  # 生成交易员对象,操作alpha策略,交易信号的类型为‘PT',意思是生成的信号代表持仓比例,例如1代表100%持有股票,0.35表示持有股票占资产的35%
op.op_type = 'stepwise'  # 运行模式为步进模式
op.set_blender('1.0*s0', "close")  # 交易策略混合方式,只有一个策略,不需要混合
op.run()  # 开始运行

在这里插入图片描述

本节回顾

这篇关于【python量化交易】qteasy使用教程07——创建更加复杂的自定义交易策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984871

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J