逻辑左移,算术左移,逻辑右移,算术右移

2024-05-13 04:38
文章标签 逻辑 左移 右移 算术

本文主要是介绍逻辑左移,算术左移,逻辑右移,算术右移,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    1010_1010_10
逻辑左移: 0101_0101_00
算术左移: 0101_0101_00
逻辑右移: 0101_0101_01
算术右移: 1101_0101_01
    
    0010_1010_10
算术右移:0001_0101_01

算术右移的左边补位和符号位有关。符号位是1就补1,符号位是0,就补0.



这篇关于逻辑左移,算术左移,逻辑右移,算术右移的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984703

相关文章

逻辑表达式,最小项

目录 得到此图的逻辑电路 1.画出它的真值表 2.根据真值表写出逻辑式 3.画逻辑图 逻辑函数的表示 逻辑表达式 最小项 定义 基本性质 最小项编号 最小项表达式   得到此图的逻辑电路 1.画出它的真值表 这是同或的逻辑式。 2.根据真值表写出逻辑式   3.画逻辑图   有两种画法,1是根据运算优先级非>与>或得到,第二种是采

UMI复现代码运行逻辑全流程(一)——eval_real.py(尚在更新)

一、文件夹功能解析 全文件夹如下 其中,核心文件作用为: diffusion_policy:扩散策略核心文件夹,包含了众多模型及基础库 example:标定及配置文件 scripts/scripts_real:测试脚本文件,区别在于前者倾向于单体运行,后者为整体运行 scripts_slam_pipeline:orb_slam3运行全部文件 umi:核心交互文件夹,作用在于构建真

【OpenCV2.2】图像的算术与位运算(图像的加法运算、图像的减法运算、图像的融合)、OpenCV的位运算(非操作、与运算、或和异或)

1 图像的算术运算 1.1 图像的加法运算 1.2 图像的减法运算 1.3 图像的融合 2 OpenCV的位运算 2.1 非操作 2.2 与运算 2.3 或和异或 1 图像的算术运算 1.1 图像的加法运算 add opencv使用add来执行图像的加法运算 图片就是矩阵, 图片的加法运算就是矩阵的加法运算, 这就要求加法运算的两张图shape必须是相同的. # 图片加法imp

【Java编程的逻辑】原子变量 CAS 显示锁

原子变量 在理解synchronized中有使用synchronized保证原子更新操作,但是使用synchronized成本太高了,需要先获取锁,最后还要释放锁,如果获取不到锁还需要等到。这些成本都是比较高的,对于这种情况,可以使用原子变量。 Java并发包中的基本原子变量类型有以下几种: AtomicBoolean:原子Boolean类型,常用来在程序中表示一个标志位 AtomicIn

【Java编程的逻辑】容器类的总结

抽象容器类 用法和特点 容器类有两个根接口,分别是Collection 和 Map ,Collection表示单个元素的集合,Map表示键值对的集合 。 Collection Collection表示的数据集合有基本的增、删、查、遍历等方法,但没有定义元素间的顺序或位置,也没有规定是否有重复元素。 List: 是Collection的子接口,表示有顺序或位置的数据集合,增加了根据

【Java编程的逻辑】堆与优先级队列PriorityQueue

完全二叉树 & 满二叉树 & 堆 基本概念 满二叉树是指除了最后一层外,每个节点都有两个孩子,而最后一层都是叶子节点,都没有孩子。 满二叉树一定是完全二叉树,但完全二叉树不要求最后一层是满的,但如果不满,则要求所有节点必须集中在最左边,从左到右是连续的,中间不能有空的。 特点 在完全二叉树中,可以给每个节点一个编号,编号从1开始连续递增,从上到下,从左到右 完全二叉树有一

【Java编程的逻辑】Map和Set

HashMap Map有键和值的概念。一个键映射到一个值,Map按照键存储和访问值,键不能重复。 HashMap实现了Map接口。 基本原理 HashMap的基本实现原理:内部有一个哈希表,即数组table,每个元素table[i]指向一个单向链表,根据键存取值,用键算出hash值,取模得到数组中的索引位置index,然后操作table[index]指向的单向链表。 存取的时候依据键的

MySQL逻辑架构和执行流程(一)

MySQL逻辑架构和执行流程 MySQL逻辑架构图第一层(连接层)第二层(核心服务层)第三层(存储引擎) 各组件详细介绍ConnectorsConnection PoolSQL_InterfaceParser解析器Optimizer优化器Cache和Buffer缓存Engine存储引擎 执行流程 MySQL 逻辑架构图 第一层(连接层) 连接层不是MYSQL架构特有的,

逻辑回归与线性回归的目标函数和应用场景比较

概述 逻辑回归和线性回归是两种常用的预测模型,它们在目标函数和应用场景上存在显著差异。本文将详细比较这两种回归模型,并提供相应的代码示例。 线性回归 线性回归是一种预测连续数值的模型,其目标是找到特征( X )和目标变量( Y )之间的线性关系。线性回归的目标函数是最小化预测值和实际值之间的平方差,即均方误差(MSE)。 目标函数 线性回归的损失函数是均方误差: [ J(\theta)

【python pytorch】Pytorch实现逻辑回归

pytorch 逻辑回归学习demo: import torchimport torch.nn as nnimport torchvision.datasets as dsetsimport torchvision.transforms as transformsfrom torch.autograd import Variable# Hyper Parameters input_si