【OpenCV2.2】图像的算术与位运算(图像的加法运算、图像的减法运算、图像的融合)、OpenCV的位运算(非操作、与运算、或和异或)

本文主要是介绍【OpenCV2.2】图像的算术与位运算(图像的加法运算、图像的减法运算、图像的融合)、OpenCV的位运算(非操作、与运算、或和异或),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 图像的算术运算
1.1 图像的加法运算
1.2 图像的减法运算
1.3 图像的融合
2 OpenCV的位运算
2.1 非操作
2.2 与运算
2.3 或和异或

1 图像的算术运算

1.1 图像的加法运算

  • add opencv使用add来执行图像的加法运算

图片就是矩阵, 图片的加法运算就是矩阵的加法运算, 这就要求加法运算的两张图shape必须是相同的.

# 图片加法
import cv2cat = cv2.imread('./cat.jpeg')
dog = cv2.imread('./dog.jpeg')# 加法要求两个图片大小一致
print(cat.shape)
print(dog.shape)
# 把猫的图片变小
# 注意坑. opencv中resize中传递新的宽度和高度, 先宽度再高度, 所有是先列后行, 和shape的输出反了.
new_cat = cv2.resize(cat, (dog.shape[:-1][::-1]))
# 和单个数字运算, 超过255 会被截断, 相当于 % 256
print(new_cat[0:5, 0:5])
print(new_cat[0:5, 0:5] + 100) 
cv2.imshow('cat_dog', np.hstack((new_cat, dog)))
# 加法, 加法的效果是加起来如果超过255, 统一变成255
new_img = cv2.add(new_cat, dog)
print(new_img[0:5, 0:5])
cv2.imshow('cat_dog', np.hstack((new_cat, dog, new_img)))cv2.waitKey(0)
cv2.destroyAllWindows()

请添加图片描述

1.2 图像的减法运算

  • subtract

  • opencv使用subtract来执行图像的减法运算, 图像对应位置的元素相减, 如果减完小于0, 统一变成0.

  # 图片减法import cv2cat = cv2.imread('./cat.jpeg')dog = cv2.imread('./dog.jpeg')# 加法要求两个图片大小一致print(cat.shape)print(dog.shape)# 把猫的图片变小# 注意坑. opencv中resize中传递新的宽度和高度, 先宽度再高度, 所有是先列后行, 和shape的输出反了.new_cat = cv2.resize(cat, (dog.shape[:-1][::-1]))# 减法new_img = cv2.subtract(new_cat, dog)print(new_cat[0:5, 0:5], dog[0:5, 0:5])print(new_img[0:5, 0:5])cv2.imshow('cat_dog', np.hstack((new_cat, dog, new_img)))cv2.waitKey(0)cv2.destroyAllWindows()

请添加图片描述

  • 同样的还有乘法, 除法运算. cv2.mutiply, cv2.divide, 原理是类似的.

1.3 图像的融合

  • cv2.addWeighted(src1, alpha, src2, beta, gamma)

  • 图片的融合操作相当于对图片进行线性运算 w1* x1 + w2 * x2 + b. 其中alpha是第一个权重参数, beta是第二个权重参数, gamma是偏差.

    import cv2cat = cv2.imread('./cat.jpeg')
    dog = cv2.imread('./dog.jpeg')new_cat = cv2.resize(cat, (dog.shape[:-1][::-1]))
    # 相当于res = new_cat * 0.4 + dog * 0.6 + 0
    res = cv2.addWeighted(new_cat, 0.4, dog, 0.6, 0)cv2.imshow('cat_dog', np.hstack((new_cat, dog, res)))cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    请添加图片描述

2 OpenCV的位运算

2.1 非操作

  • bitwise_not(img) 非操作的效果就相当于是用 255 - img

    import cv2
    import numpy as npcat = cv2.imread('./cat.jpeg')
    dog = cv2.imread('./dog.jpeg')cat_not = cv2.bitwise_not(cat)
    cat_not_not = cv2.bitwise_not(cat_not)
    cv2.imshow('not', np.hstack((cat, cat_not, cat_not_not)))
    print(cat[:3, :3])
    print(cat_not[:3, :3])
    print(cat_not_not[:3, :3]cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    请添加图片描述

2.2 与运算

  • bitwise_and(img1, img2) 与运算, 图片对应位置元素进行与操作. 表现出来的效果就是黑和黑与还是黑, 白和白与还是白.

    import cv2
    import numpy as npcat = cv2.imread('./cat.jpeg')
    dog = cv2.imread('./dog.jpeg')new_cat = cv2.resize(cat, (dog.shape[:-1][::-1]))
    cat_and_dog = cv2.bitwise_and(new_cat, dog)
    cv2.imshow('not', np.hstack((new_cat, cat_and_dog)))
    print('cat:', new_cat[:3, :3])
    print('-----------')
    print('dog:', dog[:3, :3])
    print('-----------')
    print(cat_and_dog[:3, :3])cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    请添加图片描述

2.3 或和异或

  • bitwise_or 或运算 对应元素做或运算

  • bitwise_xor 异或运算 对应元素做异或运算

    import cv2
    import numpy as np#创建一张图片
    img = np.zeros((200,200), np.uint8)
    img2 = np.zeros((200,200), np.uint8)img[20:120, 20:120] = 255
    img2[80:180, 80:180] = 255#new_img = cv2.bitwise_bit(img)
    #new_img = cv2.bitwise_and(img, img2)
    #new_img = cv2.bitwise_or(img, img2)
    new_img = cv2.bitwise_xor(img, img2)cv2.imshow('new_img', new_img)
    cv2.imshow('img', img)
    cv2.imshow('img2', img2)
    cv2.waitKey(0)

    请添加图片描述

这篇关于【OpenCV2.2】图像的算术与位运算(图像的加法运算、图像的减法运算、图像的融合)、OpenCV的位运算(非操作、与运算、或和异或)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145722

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

动手学深度学习【数据操作+数据预处理】

import osos.makedirs(os.path.join('.', 'data'), exist_ok=True)data_file = os.path.join('.', 'data', 'house_tiny.csv')with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n') # 列名f.write('NA

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据