【机器学习300问】88、什么是Batch Norm算法?

2024-05-13 02:36

本文主要是介绍【机器学习300问】88、什么是Batch Norm算法?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、什么是Batch Norm?

(1)Batch Norm的本质

        神经网络中的Batch Normalization(批量归一化,简称BatchNorm或BN)是一种改进神经网络训练过程的规范化方法,BatchNorm的主要目的是加速神经网络的训练并提高模型的性能

        在深度学习训练过程中,尤其是深层神经网络中,每层输入的数据分布可能会随着训练的进行而发生变化,这种现象被称为内部协变量偏移。这种变化会导致训练变得困难,因为每一层都需要不断适应变化的输入分布。BatchNorm通过在每一层的输入(通常是线性变换之后,激活函数之前)应用规范化处理来减轻这个问题。

(2)Batch Norm和Mini-Batch的关系

        Mini-Batch(小批量)是机器学习中常用的一种梯度下降优化策略,一种训练模式。它在每次更新模型参数时使用一小部分(而非全部)训练样本来计算梯度。这个小部分样本就称为Mini-Batch。

        Batch Norm顾名思义,是在学习时以Mini-Batch为单位,按照Mini-Batch进行正规化。具体来说是基于当前Mini-Batch内所有样本的统计信息(即均值\mu和方差\sigma ^2)进行的。使用计算出的均值和方差来规范化该批数据,确保输入的均值为0,方差为1。

二、Batch Norm的好处

  • 加速训练:减小内部协变量偏移,使得输入分布更加稳定,从而可以使用更高的学习率。
  • 正则化效应:减少过拟合,类似于dropout的效果,但机制不同。
  • 减少对权重初始化的依赖:即使初始化不是最优的,模型也能较好地收敛。

三、Batch Norm算法步骤

(1)计算Mini-Batch的均值和方差

         对于每个小批量数据,计算该批次数据在某一维度上的均值和方差。

\mu_B = \frac{1}{m} \sum_{i=1}^{m} x_i

        其中,x_i是小批量中第i个数据点的值,m是小批量的大小(即小批量中数据点的总数)。

\sigma_B^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2

        其中,x_i表示小批量数据中的第i个数据点,\mu_B是小批量的均值,和前面的公式一致,而m依然是小批量的大小。

(2)规范化

         使用这些统计量将小批量数据的每个特征调整为均值=0和方差=1

\hat{x}^{(k)} = \frac{x^{(k)} - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}

        其中x^{(k)}是输入数据,\mu_B是批数据的均值,\sigma_B^2是批数据的方差,\epsilon是一个很小的数以避免除以零。

(3)缩放和平移

        为了保留网络的学习能力,还会引入两个可学习的参数\gamma(缩放因子)和\beta(平移因子)对规范化后的数据进行调整

\hat z^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}

这篇关于【机器学习300问】88、什么是Batch Norm算法?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984446

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig