数据结构(3)--线性表实现一元多项式加法

2024-05-12 17:38

本文主要是介绍数据结构(3)--线性表实现一元多项式加法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考书籍:数据结构(C语言版) 严蔚敏 吴伟民编著 清华大学出版社

本文中的代码可从这里下载:https://github.com/qingyujean/data-structure

1.简要说明

    一元多项式的表示和相加

    多项式Pn(x)按升幂可写成:

                Pn(x) = P0+P1*x+p2*x^2+...+Pn*x^n,

    它由n+1个系数唯一确定,因此可用一个线性表p=(p0,p1,p2,...,pn),每一项的指数i隐含在系数pi的序号里。设Qm(x)是一元m次多项式,则可用线性表Q=(q0,q1,q2,...,qm)来表示。不失一般性,设m<n,则两个多项式想家的结果多项式Rn(x)=Pn(x)+Qm(x)可用线性表:

                (p0+q0, p1+q1, ..., pm+qm, p(m+1), ..., pn)

    分析:
    对P、Q、R可用顺序存储结构,多项式相加的算法定义将十分简单,但通常应用中次数可能很高,使得顺序存储结构的最大长度很难确定;另外很多项的系数也可能为0,比如S(x)=1+3x^10000+2x^20000,如果是像这样仅有3个非0元素,则顺序存储结构的线性表的存储空间将非常浪费,故采用单链表结构,但是这时就要存储指数了。
    一元n次多项式Pn(x)=p1*x^e1 + p2*x^e2 +...+pm*x^em,其中pi是指数为ei的项的非零系数,且满足0<=e1<e2<...<em=n,若用一个长度为m且每个元素有两个数据项(系数项+指数项)的线性表((p1,e1),(p2,e2),...,(pm,em))便可唯一确定多项式Pn(x)。 最坏情况下,n+1(=m)个系数都不为0,这种表示将大大节省空间。

    实现:
    "和多项式"链表中的节点无需另生成,而应该从两个多项式的链表中摘取。运算规则如下:假设指针qa、qb分别指向多项式A和B中当前进行比较的某个节点,则比较两个节点中的指数项,有下列3种情况:
     1.qa所指节点的指数值<qb所指节点的指数值,则应摘取qa所指节点插入到“和多项式”中;
     2.qa所指节点的指数值>qb所指节点的指数值,则应摘取qb所指节点插入到“和多项式”中;
     3.qa所指节点的指数值=qb所指节点的指数值,则将两节点的系数相加
          3.1若系数相加和数不为0,则修改qa所指节点的系数值,同时释放qb所指节点;
          3.2若系数相加和数为0,从多项式A的单链表中删除相应节点,并释放qa和qb所指节点。
    注意:
    表示一元多项式的应该是有序链表

2.代码实现

#include<stdio.h>
#include<stdlib.h>
#define NULL 0
typedef struct term{float coef;int expn;struct term *next;
}term, *LinkList;//term为一个新类型(是一个结构体),LinkList为指向这样的结构体的指针typedef LinkList polynomial;

 

int cmp(LinkList qa, LinkList qb){//比较项的指数大小if(qa->expn > qb->expn)return 1;else if(qa->expn == qb->expn)return 0;elsereturn -1;
}
//若有序链表L中存在与项t的指数相等的元素,则指针q指向L中第一个指数为t->expn的节点的位置,
//否则q指向第一个指数满足与t->expn相比>0的节点的前驱位置
bool locateElem(LinkList L, LinkList t, LinkList &q){LinkList p1 = L->next;LinkList p2 = L;//p2总指向p1的前驱while(p1){if(t->expn > p1->expn){p1 = p1->next;p2 = p2->next;}else if(t->expn == p1->expn){q = p1; return true;}else{//p1->expn > t->expn,因为L是有序表,所以如果程序走到了这一步,说明没找到与项t的指数相等的节点元素//则返回q的前驱结点q = p2;return false;}}if(!p1){//t->expn比当前列表所有元素的指数都大,则上面的while循环会因为p2到达了尾节点,p1=NULL而跳出q = p2;return false;}
}
//输入m项的系数和指数,建立表示一元多项式的带有头节点的有序链表P
//利用尾插法
void createPolyn(polynomial &P, int m){//先建立一个带有头节点的空链表,即初始化P = (polynomial)malloc(sizeof(term));P->next = NULL;LinkList r = P;//r指针总是指向当前线性表的最后一个元素,即尾元素printf("输入系数,指数,如项2x^5则输入(2,5):\n");//不必按升幂输入for(int i = 0; i < m; i++){//依次输入m个非零项LinkList t = (LinkList)malloc(sizeof(term));t->next = NULL;LinkList q;scanf("%f,%d",&t->coef,&t->expn);if(!locateElem(P, t, q)){//当前链表中不存在该指数项,则插入,此时q为链表中第一个指数>t->expn的节点的前驱结点t->next = q->next;q->next = t;}else{//当前列表中已经存在有节点元素的指数与本次输入的项的指数相同,所以本次输入无效,应重新输入i--;}}
}
//打印多项式链表
void printPolynomial(polynomial P){LinkList q = P->next;printf("打印多项式的线性表:[");while(q){printf("(%.2f,%d)  ",q->coef, q->expn);q = q->next;}printf("]\n\n");
}
//多项式加法:Pa=Pa+Pb,利用2个多项式的节点构成“和多项式”
void addPolyn(polynomial &Pa, polynomial &Pb){LinkList qa = Pa->next;LinkList qb = Pb->next;LinkList qc = Pa;//pc总是指向"和多项式链表"的最后一个节点float sumOfCoef;while(qa&&qb){switch(cmp(qa, qb)){case 1:qc->next = qb;qc = qb;qb = qb->next;break;case 0://当前比较的两项的指数相同sumOfCoef = qa->coef + qb->coef;if(sumOfCoef != 0.0){//系数之和不为0,则修改qa所指节点的系数,同时释放gb所指节点LinkList s = qb;//s即将被free掉qa->coef = sumOfCoef;qc->next = qa;qc = qa;qa = qa->next;qb = qb->next;free(s);}else{//系数之和不为0,则从多项式链表A中删除qa所指节点,并free掉qa、qb所指节点LinkList s1 = qa;LinkList s2 = qb;qc->next = qa ->next;//qc的位置不变,qa、qb向后移动qa = qa->next;qb = qb->next;free(s1);free(s2);}break;case -1:qc->next = qa;qc = qa;qa = qa->next;break;}//end switch}//end whileqc->next = qa?qa:qb;//插入剩余段free(Pb);//释放Pb的头节点
}
//实例:Pa(x)=7+3x+9x^8+5x^17, 输入((7,0),(3,1),(9,8),(5,17))
//Pb(x)=8x+22x^7-9x^8,输入((8,1),(22,7),(-9,8))
//和多项式为Pa(x) = 7+11x+22x^7+5x^17,即最后应该输出((7,0),(11,1),(22,7),(5,17))
int main(){polynomial Pa;createPolyn(Pa, 4);//初始化并创建多项式链表PaprintPolynomial(Pa);polynomial Pb;createPolyn(Pb, 3);//初始化并创建多项式链表PaprintPolynomial(Pb);printf("执行多项式相加以后\n");addPolyn(Pa, Pb);printPolynomial(Pa);return 0;
}

 

本文中的代码可从这里下载:https://github.com/qingyujean/data-structure

这篇关于数据结构(3)--线性表实现一元多项式加法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/983298

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J