3D 生成重建009-DreamGaussian使用gaussian splatting在两分钟内生成3d

本文主要是介绍3D 生成重建009-DreamGaussian使用gaussian splatting在两分钟内生成3d,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3D 生成重建009-DreamGaussian使用gaussian splatting在两分钟内生成3d


文章目录

    • 0 论文工作
    • 1 论文方法
    • 2 效果

0 论文工作

DreamGaussian是第一个使用gaussian splatting方法进行3d生成的工作。论文最先使用gaussian splatting替代原来用nerf表示3d。整体架构依然保留了原来的SDS方法。论文采用了两阶段方法,第一阶段用sds损失生成一个GS3d表示并提出一个粗体的mesh表示。第二阶段用MSE对mesh的纹理进行表示。这个方法能用文本生成也能用图像生成。他的核心优势还是图像生成3d,因为他用到了zero123和MVD等3d-aware的扩散模型,可以根据输入图像生成偏移的新视图。
这个论文速度基本上在两分钟左右,这远远超越了原来的nerf表达形式的优化方法。能达到这一速度的原因有以下几点:1)GS表达的优化速度快,2)zero123等3d感知扩散模型,降低了SDS的寻优时间,3)二阶段的mesh表达等。

1 论文方法

如下图所示,整个过程分为三个步骤,两个阶段。第一阶段包括GS的生成和mesh提取。
对于生成GS,使用一个随机初始化的GS,用输入图像和随机旋转后的新视角图像进行约束,他的约束包含原始图的sds和新视图的MSE。由于zero123等MVD具备3d空间感知能力,一定程度解决多面问题,而且不需要额外的3d先验知识的引入。然后就是从GS的点云中提取mesh。在第二阶段就是对纹理进行优化,因为sds的很大程度会导致过平滑和缺少细节。在第二阶段通过对噪声程度进行控制,然后进行多步降噪计算MSE损失,对细节进行补充。可以确定的是这种策略还是限制细节能力。一种解决思路应该就是更好的MVD模型,另外一种就是改进第二阶段的优化策略。
第二阶段有挺大的改进策略,或者是使用更好的mesh提取方法,因为第一阶段的更好的几何也很重要。值得一提的是,这个方法在速度上的优势,GS和MVD的结合,可以确定这会是比较好的base。
在这里插入图片描述

2 效果

文本生成3d的效果,还是存在比较严重的多面问题和模糊缺乏细节。这种情况下多面比较严重,但是挑选的例子本身都是没有真正人脑所理解的正反面,所以不严重。当使用小动物或者人进行生成时,就会发现这个多面问题。常规引入额外3d先验知识的方法会有较大时间消耗。
在这里插入图片描述
图像生成3d的效果,能缓解多面问题,但是细节确实还是比较严重。论文中使用卡通例子的时候细节问题并不明显,但是当用其他风格图片的时候问题就会比较明显。这也是一个值得思考改进的点。
在这里插入图片描述

这篇关于3D 生成重建009-DreamGaussian使用gaussian splatting在两分钟内生成3d的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981925

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n