使用xtuner微调InternLM-Chat-7B

2024-05-12 05:28

本文主要是介绍使用xtuner微调InternLM-Chat-7B,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 安装xtuner

#激活环境
source activate test_llm
# 安装xtuner
pip install xtuner#还有一些依赖项需要安装
future>=0.6.0
cython
lxml>=3.1.0
cssselect
mmengine

2. 创建一个ft-oasst1  数据集的工作路径,进入

mkdir ft-oasst1 
cd ft-oasst1

3.XTuner 提供多个开箱即用的配置文件

# 列出所有内置配置
xtuner list-cfg

 输出

==========================CONFIGS===========================
baichuan2_13b_base_qlora_alpaca_e3
baichuan2_13b_base_qlora_alpaca_enzh_e3
baichuan2_13b_base_qlora_alpaca_enzh_oasst1_e3
.....
chatglm2_6b_qlora_alpaca_e3
chatglm2_6b_qlora_alpaca_enzh_e3
chatglm2_6b_qlora_alpaca_enzh_oasst1_e3
.....
cohere_100b_128k_sp32
deepseek_coder_6_7b_base_qlora_code_alpaca_e3
deepseek_moe_16b_base_full_oasst1_e3
deepseek_moe_16b_base_qlora_oasst1_e3
.....
gemma_2b_full_alpaca_e3
gemma_2b_it_full_alpaca_e3
gemma_2b_it_qlora_alpaca_e3
.....
.....
internlm2_7b_qlora_oasst1_e3
internlm2_7b_qlora_sql_e3
internlm2_7b_w_tokenized_dataset
.....
llama2_70b_full_wizardlm_e1
llama2_70b_int8_lora_open_platypus_e1
llama2_70b_int8_lora_open_platypus_e1_hf
.....
llava_internlm2_chat_1_8b_clip_vit_large_p14_336_e1_gpu8_pretrain
llava_internlm2_chat_1_8b_qlora_clip_vit_large_p14_336_lora_e1_gpu8_finetune
llava_internlm2_chat_20b_clip_vit_large_p14_336_e1_gpu8_pretrain
.....
mistral_7b_full_finetune_custom_dataset_e1
mistral_7b_qlora_skypile_pretrain_e1
mistral_7b_w_tokenized_dataset
.....
qwen1_5_0_5b_chat_full_alpaca_e3
qwen1_5_0_5b_chat_qlora_alpaca_e3
qwen1_5_0_5b_full_alpaca_e3
.....
qwen_1_8b_chat_qlora_alpaca_e3
qwen_1_8b_chat_qlora_alpaca_enzh_e3
qwen_1_8b_chat_qlora_alpaca_enzh_oasst1_e3
.....
qwen_72b_qlora_alpaca_e3
qwen_72b_qlora_alpaca_enzh_e3
qwen_72b_qlora_alpaca_enzh_oasst1_e3
.....
starcoder_qlora_stack_exchange_example
yi_34b_qlora_alpaca_enzh_e3
yi_6b_qlora_alpaca_enzh_e3
zephyr_7b_beta_qlora_alpaca_e3

internlm_chat_7b_qlora_oasst1_e3含义

模型名internlm_chat_7b
微调使用算法qlora
数据集oasst1
把数据集跑几次

跑3次:e3 (epoch 3 )

拷贝一个配置文件到当前目录

xtuner copy-cfg internlm_chat_7b_qlora_oasst1_e3 .

 生成一个internlm_chat_7b_qlora_oasst1_e3_copy.py配置文件,修改配置文件

# PART 1中
#预训练模型存放的位置
pretrained_model_name_or_path = '/root/personal_assistant/model/Shanghai_AI_Laboratory/internlm-chat-7b'
#微调数据存放的位置
data_path='/root/personal_assistant/data/personal_assistant.json'
# 训练中最大的文本长度
max_length = 512
# 每一批训练样本的大小
batch_size = 2
#最大训练轮数
max_epochs = 3
# 验证的频率
evaluation_freq = 90
# 用于评估输出内容的问题(用于评估的问题尽量与数据集的question保持一致)
evaluation_inputs = ["请介绍一下你自己" ,"请做一下自我介绍"]# PART 3中
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data path))
dataset_map_fn=None

 

 4.下载internlm_chat_7b模型,下载到ft-oasst1文件夹中

详见:InternLM-Chat-7B部署调用-个人记录-CSDN博客

5.从 huggingface 下载数据集openassistant-guanaco到ft-oasst1文件夹中

git clone https://huggingface.co/datasets/timdettmers/openassistant-guanaco.git

6.微调模型

微调指令

xtuner train internlm_chat_7b_qlora_oasst1_e3_copy.py# 多卡
NPROC_PER_NODE=${GPU_NUM} xtuner train internlm_chat_7b_qlora_oasst1_e3_copy.py# 若要开启 deepspeed 加速,增加 --deepspeed deepspeed_zero2 即可

跑完训练后,当前路径应该长这样:

|-- internlm-chat-7b
|-- internlm_chat_7b_qlora_oasst1_e3_copy.py
|-- openassistant-guanaco
|   |-- openassistant_best_replies_eval.jsonl
|   `-- openassistant_best_replies_train.jsonl
`-- work_dirs`-- internlm_chat_7b_qlora_oasst1_e3_copy|-- 20231101_152923|   |-- 20231101_152923.log|   `-- vis_data|       |-- 20231101_152923.json|       |-- config.py|       `-- scalars.json|-- epoch_1.pth|-- epoch_2.pth|-- epoch_3.pth|-- internlm_chat_7b_qlora_oasst1_e3_copy.py`-- last_checkpoint

 

7.微调后参数转换/合并

训练后的pth格式参数转Hugging Face格式

xtuner convert pth_to_hf $CONFIG_NAME_OR_PATH $PTH $SAVE_PATH  例如:
xtuner convert pth_to_hf ./internlm_chat_7b_qlora_oasst1_e3_copy.py ./work_dirs/internlm_chat_7b_qlora_oasst1_e3_copy/epoch_1.pth ./hf

将base模型与loRA模型合并

xtuner convert merge $NAME_OR_PATH_TO_LLM $NAME_OR_PATH_TO_ADAPTER $SAVE_PATH --max-shard-size 2GB  例如:
xtuner convert merge ./internlm-chat-7b ./hf ./merged --max-shard-size 2GB

合并后

 

与原来的internlm的完全一样 

 

与合并后的模型对话

# 加载 Adapter 模型对话(Float 16)
xtuner chat ./merged --prompt-template internlm_chat# 4 bit 量化加载
xtuner chat ./merged --prompt-template internlm_chat --bits 4

 效果:

 8.demo

创建文件demo.py

import torch
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_name_or_path = "merged" # 这里请修改tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""messages = [(system_prompt, '')]print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")while True:input_text = input("User  >>> ")input_text.replace(' ', '')if input_text == "exit":breakresponse, history = model.chat(tokenizer, input_text, history=messages)messages.append((input_text, response))print(f"robot >>> {response}")

 微调前
在这里插入图片描述
微调后
在这里插入图片描述 

9.自定义数据集微调

Xtuner接受jsonl格式的数据,所以我们在实际微调时,常常将文本数据转化成相应的格式进行微调,这里利用chatgpt工具帮我们写python脚本进行数据格式转换,将原xlsx格式

转换为我们需要的格式 

 再进行上述操作

结果展示

 10.xtuner补充

 

 

 

 

 

 

 

 

 

参考:XTuner大模型单卡低成本微调实战-CSDN博客 

参考:XTuner 大模型单卡低成本微调之本地实战_本地大模型微调-CSDN博客 

「浦语大模型四」Xtuner微调实战-CSDN博客 

这篇关于使用xtuner微调InternLM-Chat-7B的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981723

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四