stata空间计量模型基础+检验命令LM检验、sem、门槛+arcgis画图

2024-05-11 23:52

本文主要是介绍stata空间计量模型基础+检验命令LM检验、sem、门槛+arcgis画图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  1. 怎么安装stata命令 3
  2. 怎么使用已有的数据 4
  3. 数据编辑器中查看数据 4
  4. 怎么删除不要的列 4
  5. 直接将字符型变量转化为数值型的命令 4
  6. 改变字符长度 4
  7. 描述分析 4
  8. 取对数 5
  9. 相关性分析 5
  10. 单位根检验 5
  11. 权重矩阵标准化 6
  12. 计算泰尔指数 6
  13. 做核密度图 7
  14. Moran’s I 指数 8
  15. 空间计量模型 9
  16. LM检验 10
  17. Hausman 检验 11
  18. LR 检验 11
  19. 检验是否退化 13
  20. Wald 检验 14
  21. 交互效应 14
  22. 中介效应 15
  23. 门槛模型 19
  24. Arcgis画图 20
  25. 怎么选择想要的省份 24
  26. 空间引力模型 25
    1.怎么安装stata命令
    ① ssc install 名字
    在这里插入图片描述

②  search 名字
在打开的网页点击随便一个蓝色连接
在这里插入图片描述

点击click…
在这里插入图片描述
完成
在这里插入图片描述
2.怎么使用已有的数据
文件——更改工作目录——选择到数据所在的文件位置——确定
这样子就把当前的stata程序也保存在了同一目录下了,就可以使用在此文件的数据了
3.数据编辑器中查看数据

4.怎么删除不要的列
导入数据——use data——drop 名字
5.直接将字符型变量转化为数值型的命令
当数据格式是str,文本类型,所以呈现红色
destring 变量名,replace 新的名字(英文)
encode 变量,generate(yy)
6.改变字符长度
format var8 %16.0g *16.0意思是改为16个字符那么长
7.描述分析
ssc inatall asdoc *下载包
asdoc sum y en res tec con
在这里插入图片描述
8.取对数
foreach var of varlist y en res tec con{
gen ln ‘var’=log(‘var’)}
9.相关性分析
correlate y tec res en con
在这里插入图片描述
10.单位根检验
n大于t可以不做,想要检验一个名为“inflation”的变量是否存在单位根,可以运行以下命令
DF检验
dfuller inflation, trend
ADF检验
Dfuller inflation, lags(4)
面板数据单位根检验
如果p值小于显著性水平,则可以拒绝原假设并认为该变量不存在单位根。
xtunitroot llc lnrxrate , demean lags(aic 10) kernel(bartlett nwest)
demean表示去截面均值
lags(#) 表示序列变量差分的滞后项数#,其中截面滞后阶数相同
lags(aic #) lags(bic #) lags(hqic #)以aic bic hqic准则判定最大滞后阶数#
trend 表示加入趋势项并默认加入个体固定项
noconstant 表示趋势项与个体项都不加入
trend和noconstant都不加默认个体固定项
kernel(kernel_spec) 为核函数,估计渐进方差,具体设定包括 ba pa qu等)
11.权重矩阵标准化
spatwmat using W.dta, name(W) standardize *行标准化
12.计算泰尔指数
在这里插入图片描述
在这里插入图片描述

数据如下

在这里插入图片描述
. use data3.dta
. gen I城镇= 城镇人口* 城镇收入
. gen I农村= 农村人口农村收入
. sort I农村
. gen Iall= I城镇+ I农村
. gen Pall=城镇人口+ 农村人口
. gen I比例城镇= I城镇/ Iall
. gen I比例农村= I农村/ Iall
. gen p比例城镇= 城镇人口 / Pall
. gen p比例农村= 农村人口 / Pall
. gen theil= I比例城镇
ln( I比例城镇/ p比例城镇)+ I比例农村*ln( I比例农村/ p比例农村)
. sum thei
13.做核密度图
假如做城镇收入的核密度图
kdensity 城镇收入
更改坐标
. kdensity 城镇收入,xlabel(0.1(0.2)1.5) ylabel(0(0.2)1.5)
画多个核密度
. kdensity 城镇收入,addplot(kdensity 农村收入) xlabel(0.1(0.2)1.5) ylabel(0(0.2 )1.5) *两个图
. kdensity 城镇收入,addplot((kdensity 农村收入)(kdensity 城镇人口)) xlabel(0.1(0.2)1.5) ylabel(0(0.2)1.5) *三个图
在这里插入图片描述
增加坐标名
. kdensity 城镇收入,xlabel(0.1(0.2)1.5) ylabel(0(0.2)1.5) title(“收入核密度图”) xtitle(“时间”) ytitle(“密度”)

14.Moran’s I 指数
preserve
keep if year==2010
spatgsa y,weights(W) moran
restore
*把年份改了就可以做所有年的,结果中p值小于0.1则存在空间效应
在这里插入图片描述
15.空间计量模型
先把空间权重矩阵放进去
spatwmat using w.dta,name(w) standardize *标准化
clear
use data *使用数据
xtset id year
随机效应模型
xsmle y x a, model(sdm) wmat(W) type(both) nolog effects re
时间固定效应
xsmle y x a, model(sdm) wmat(W) type(time) nolog effects fe
个体固定效应
xsmle y x a, model(sdm) wmat(W) type(ind) nolog effects fe
双固定效应
xsmle y x a, model(sdm) wmat(W) type(both) nolog effects fe

  • effects表示显示直接效应、间接效应与总效应,noeffects不显示
    加上约束变量只看x1的空间效应
    xsmle y x1 x2 x3,wmat(W) durbin(x1) model(SDM) fe
    est ic看AIC BIC
    16.LM检验
    *判断是否存在空间依赖性,是才可以做空间计量模型
    *进行LM检验之前,需要将空间权重矩阵扩大
    use w / /W 为权重名称
    spcs2xt a1-a30,matrix(w)time(13) //扩大13倍
    spatwmat using wxt,name(W)
    clear
    use data *调用论文数据 data
    xtset id year
    reg y x1 x2 x3 a1 a2 a3 a4 *ols的结果
    spatdiag,weights(W) *LM检验
    在这里插入图片描述
    一般来说,P值小于0.1则显著。Spatial error为空间误差模型(SEM);Spatial lag为空间滞后模型(SAR);Robust为结果稳健的意思。Error的p值不显著,不适合空间误差,在这里空间滞后也不显著。
    在这里插入图片描述
    17.Hausman 检验
    检验用于选择固定效应模型还是随机效应模型,用没有扩大的权重矩阵
    方法一
    spatwmat using w.dta,name(w) standardize
    xsmle y en res tec con , fe model(sdm) wmat(w) hausman nolog noeffects
    在这里插入图片描述

p大于0.1选择随机,否则选择固定

方法二
xsmle y x1 x2 x3 a1 a2 a3 a4 , fe model(sdm) wmat(W) nolog noeffects type(both)
est store fe
xsmle y x1 x2 x3 a1 a2 a3 a4 , re model(sdm) wmat(W) nolog noeffects type(both)
est store re
hausman fe re

18.LR 检验
判断使用何种固定效应模型,检验地区固定效应、时间固定效应以及双固定效应,三种效应哪个最适合
spatwmat using W, name(W) standardize
个体固定
xsmle y x1 x2 x3 a1 a2 a3 a4 , fe model(sdm) wmat(W) nolog noeffects type(ind)
est store ind
时间固定
xsmle y x1 x2 x3 a1 a2 a3 a4 , fe model(sdm) wmat(W) nolog noeffects type(time)
est store time
双固定
xsmle y x1 x2 x3 a1 a2 a3 a4 , fe model(sdm) wmat(W) nolog noeffects type(both)
est store both
lrtest both ind,df(10) *看哪一个最优
lrtest both time,df(10)
操作案例
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(ind)
est store ind
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(time)
est store time
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(both)
est store both
lrtest both ind,df(10) *这才是判断哪一个最优,前面只需要跑一下就可以了
在这里插入图片描述
可见P值显著,那么拒绝使用个体,从而使用both
在这里插入图片描述
同理选择双向固定的both
19.检验是否退化
检验空间杜宾模型是否会退化为空间滞后模型和空间误差模型
操作案例
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(both)
est store sdm
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(both)
est store sar
. xsmle y en res tec con , fe model(sem) emat(w) nolog noeffects type(both)
est store sem
lrtest sdm sar *H0:SDM退化为SAR
如果P小于0.1显著,不可以退化,P值大于0.1,说明可以退化
lrtest sdm sem *H0:SDM退化为SEM
如果P小于0.1显著,不可以退化,P值大于0.1,说明可以退化
20.Wald 检验
clear all
use data
spatwmat using W.dta,name(W) standardize
xtset id year
xsmle y x a, fe model(sdm) wmat(W) type(both) nolog noeffects
Test x=a=0
Test [wx]x=0
Test[wx]x=[wx]a=0
estat ic
21.交互效应
在这里插入图片描述

gen c = a*b 产生a和b的交互项
然后做回归
gen c = en
res
reg y en res con c
11.中介效应
ba和c’同号则表示发挥了中介效应,异号则表示稀释效应。
在这里插入图片描述
中介效应方法一
reg tec en res con *在这里假设tec为中介变量,en是核心解释变量
在这里插入图片描述

看en所对应的p小于0.1可见是显著的
estimates store reg1 *结果存起来
reg y res con tec en
*tec所对应的p值小于0.1
*tec所对应的p值小于0.1
在这里插入图片描述

estimates store reg2
esttab reg1 reg2 using out.doc,mtitles r2(%6.2f) ar2(%6.2f)
*把结果输入到word其中r2为R方 ar2为调整的
*如果都显著说明存在中介效应,在这里reg2回归中en前面的系数是显著的,说明中介变量发挥的是部分效应,如果一个显著一个不显著需要用bootstrap检验,检验如下
bootstrap r(ind_eff) r(dir_eff),reps(1000):sgmediation y mv(tec) iv(en) cv(con res)
*mv里面是中介变量 iv是自变量 cv是控制变量
中介效应方法二
逐步回归
ssc install reghdfe
ssc install ftools
reghdfe y res en con,absorb(id year) vce(cluster id)
*在这里假设tec为中介变量,en的核心解释变量
est store m1
reghdfe tec res en con,absorb(id year) vce(cluster id)
est store m2
在这里插入图片描述

reghdfe y tec res en con,absorb(id year) vce(cluster id)
在这里插入图片描述

est store m3
esttab m1 m2 m3 using out.doc,mtitles r2(%6.2f) ar2(%6.2f)
*结果主要看第二步en前的系数是否显著和第三步tec前面的系数是否显著,两个都显著说明存在中介效应
如果一个显著一个不显著需要用bootstrap检验,检验如下
bootstrap r(ind_eff) r(dir_eff),reps(1000):sgmediation2 y mv(tec) iv(en) cv(con res)
sobel检验
net install sgmediation2, from(“https://tdmize.github.io/data/sgmediation2”)
*安装命令
Sgmediation2 y, mv(tec) iv(en) cv(con res) *cv里面不能用i.id,要手工产生
tab id,gen(id) *生成个体虚拟变量
ssgmediation2 y,mv( tec ) iv( en ) cv( con res id1-id30) quietly
*quietly表示不显示逐步回归
自助法
bootstrap r(ind_eff) r(dir_eff),reps(1000) bca:sgmediation2 y mv(tec) iv(en) cv(con res id1-id30)
*(ind_eff)表示间接效应,(dir_eff)表示直接效应,结果包括0就显著,不包括0就不显著
12.门槛模型
xthreg y c1 c2 c3 c4, rx(x1) qx(x2) thnum(1) bs(300) trim(0.01) grid(100)
其中,y表示被解释变量,c1-c4表示控制变量,rx表示核心解释变量,qx表示门槛变量,thnum表示门槛个数bs表示自举次数(理论上越多越好,但是考虑到效率,一般设置成300以上),trim表示门限分组内异常值去除的比例(一般选0.01或0.05),grid表示样本网格计算的网格数(一般设置成100或300),r表示用聚类稳健标准误
单一门槛
xthreg y c1 c2, rx(x1) qx(x2) thnum(1) bs(300) trim(0.01) grid(100) r
双门槛
xthreg y c1 c2, rx(x1) qx(x2) thnum(2) bs(300 300) trim(0.01 0.01)grid(100) r
三门槛
xthreg y c1 c2, rx(x1) qx(x2) thnum(3) bs(300 300 300) trim(0.01 0.01 0.01) grid(100) r
在这里插入图片描述
*这里的p不显著说明不存在门槛值
三门槛结果解读
在这里插入图片描述
*如果p都小于0.1,那么0.3685第一门槛值 0.1620 第二 0.2153第三,门槛值从小到大看是第几个门槛
在这里插入图片描述

*假设p值小于0.1,表示在门槛值小于第一门槛值时en对解释变量y的影响为0.31,介于第一和第二门槛值是en对y的影响是0.818,以此类推
13.Arcgis画图
蓝色➕插入地图信息
在这里插入图片描述
右键——连接
在这里插入图片描述
选择连接的文件
在这里插入图片描述
以NAME为连接字段 ——选择连接的文件
在这里插入图片描述
打开数据属性表可以看看连接情况
右键——点击属性——标注——字段选择(name)——应用
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
符号系统——数量

在这里插入图片描述
值(要画的数据) 色带自己选择喜欢的

在这里插入图片描述
怎么把局部的放大呢(显示南海这些区域)
插入——数据框——复制行政区 国界线——布局视图
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
插入——文本——输入标题名字
布局试图下——插入——比例尺——插入——指北针
在这里插入图片描述
14.怎么选择想要的省份
选择+shift(在知道地理位置的时候)
打开属性表——NAME_——获取唯一值——大写的IN依次点击省份名字用英文逗号隔开——右键——选择——所选建立图层
在这里插入图片描述
在这里插入图片描述
15.空间引力模型

在这里插入图片描述

这篇关于stata空间计量模型基础+检验命令LM检验、sem、门槛+arcgis画图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981011

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

查看Oracle数据库中UNDO表空间的使用情况(最新推荐)

《查看Oracle数据库中UNDO表空间的使用情况(最新推荐)》Oracle数据库中查看UNDO表空间使用情况的4种方法:DBA_TABLESPACES和DBA_DATA_FILES提供基本信息,V$... 目录1. 通过 DBjavascriptA_TABLESPACES 和 DBA_DATA_FILES

Linux find 命令完全指南及核心用法

《Linuxfind命令完全指南及核心用法》find是Linux系统最强大的文件搜索工具,支持嵌套遍历、条件筛选、执行动作,下面给大家介绍Linuxfind命令完全指南,感兴趣的朋友一起看看吧... 目录一、基础搜索模式1. 按文件名搜索(精确/模糊匹配)2. 排除指定目录/文件二、根据文件类型筛选三、时间

使用mvn deploy命令上传jar包的实现

《使用mvndeploy命令上传jar包的实现》本文介绍了使用mvndeploy:deploy-file命令将本地仓库中的JAR包重新发布到Maven私服,文中通过示例代码介绍的非常详细,对大家的学... 目录一、背景二、环境三、配置nexus上传账号四、执行deploy命令上传包1. 首先需要把本地仓中要

Windows命令之tasklist命令用法详解(Windows查看进程)

《Windows命令之tasklist命令用法详解(Windows查看进程)》tasklist命令显示本地计算机或远程计算机上当前正在运行的进程列表,命令结合筛选器一起使用,可以按照我们的需求进行过滤... 目录命令帮助1、基本使用2、执行原理2.1、tasklist命令无法使用3、筛选器3.1、根据PID

Linux系统之authconfig命令的使用解读

《Linux系统之authconfig命令的使用解读》authconfig是一个用于配置Linux系统身份验证和账户管理设置的命令行工具,主要用于RedHat系列的Linux发行版,它提供了一系列选项... 目录linux authconfig命令的使用基本语法常用选项示例总结Linux authconfi

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot