pytorch版本的bert模型代码(MLM)

2024-05-11 22:04

本文主要是介绍pytorch版本的bert模型代码(MLM),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

魔改bert就必须要知道Bert的结构:

主要解答与BertForMaskedLM(MLM)有关的类:

下面是MLM的分类头:

class BertLMPredictionHead(nn.Module):def __init__(self, config, bert_model_embedding_weights):super(BertLMPredictionHead, self).__init__()self.transform = BertPredictionHeadTransform(config)# The output weights are the same as the input embeddings, but there is# an output-only bias for each token.self.decoder = nn.Linear(bert_model_embedding_weights.size(1),bert_model_embedding_weights.size(0),bias=False)self.decoder.weight = bert_model_embedding_weightsself.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))"""上面是创建一个线性映射层, 把transformer block输出的[batch_size, seq_len, embed_dim]映射为[batch_size, seq_len, vocab_size], 也就是把最后一个维度映射成字典中字的数量, 获取MaskedLM的预测结果, 注意这里其实也可以直接矩阵成embedding矩阵的转置, 但一般情况下我们要随机初始化新的一层参数"""def forward(self, hidden_states):hidden_states = self.transform(hidden_states)hidden_states = self.decoder(hidden_states) + self.biasreturn hidden_statesclass BertOnlyMLMHead(nn.Module):def __init__(self, config, bert_model_embedding_weights):super(BertOnlyMLMHead, self).__init__()self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)def forward(self, sequence_output):prediction_scores = self.predictions(sequence_output)return prediction_scores

另一个类:

class BertModel(BertPreTrainedModel):"""BERT model ("Bidirectional Embedding Representations from a Transformer").Params:config: a BertConfig class instance with the configuration to build a new modelInputs:`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts`extract_features.py`, `run_classifier.py` and `run_squad.py`)`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the tokentypes indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds toa `sentence B` token (see BERT paper for more details).`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indicesselected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the maxinput sequence length in the current batch. It's the mask that we typically use for attention whena batch has varying length sentences.`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.Outputs: Tuple of (encoded_layers, pooled_output)`encoded_layers`: controled by `output_all_encoded_layers` argument:- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the endof each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), eachencoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states correspondingto the last attention block of shape [batch_size, sequence_length, hidden_size],`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of aclassifier pretrained on top of the hidden state associated to the first character of theinput (`CLS`) to train on the Next-Sentence task (see BERT's paper).Example usage:```python# Already been converted into WordPiece token idsinput_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)model = modeling.BertModel(config=config)all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)```"""def __init__(self, config):super(BertModel, self).__init__(config)self.embeddings = BertEmbeddings(config)self.encoder = BertEncoder(config)self.pooler = BertPooler(config)self.apply(self.init_bert_weights)def forward(self, input_ids, positional_enc, token_type_ids=None, attention_mask=None,output_all_encoded_layers=True, get_attention_matrices=False):if attention_mask is None:# torch.LongTensor# attention_mask = torch.ones_like(input_ids)attention_mask = (input_ids > 0)# attention_mask [batch_size, length]if token_type_ids is None:token_type_ids = torch.zeros_like(input_ids)# We create a 3D attention mask from a 2D tensor mask.# Sizes are [batch_size, 1, 1, to_seq_length]# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]# this attention mask is more simple than the triangular masking of causal attention# used in OpenAI GPT, we just need to prepare the broadcast dimension here.extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)# 注意力矩阵mask: [batch_size, 1, 1, seq_length]# Since attention_mask is 1.0 for positions we want to attend and 0.0 for# masked positions, this operation will create a tensor which is 0.0 for# positions we want to attend and -10000.0 for masked positions.# Since we are adding it to the raw scores before the softmax, this is# effectively the same as removing these entirely.extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibilityextended_attention_mask = (1.0 - extended_attention_mask) * -10000.0# 给注意力矩阵里padding的无效区域加一个很大的负数的偏置, 为了使softmax之后这些无效区域仍然为0, 不参与后续计算# embedding层embedding_output = self.embeddings(input_ids, positional_enc, token_type_ids)# 经过所有定义的transformer block之后的输出encoded_layers, all_attention_matrices = self.encoder(embedding_output,extended_attention_mask,output_all_encoded_layers=output_all_encoded_layers,get_attention_matrices=get_attention_matrices)# 可输出所有层的注意力矩阵用于可视化if get_attention_matrices:return all_attention_matrices# [-1]为最后一个transformer block的隐藏层的计算结果sequence_output = encoded_layers[-1]# pooled_output为隐藏层中#CLS#对应的token的一条向量pooled_output = self.pooler(sequence_output)if not output_all_encoded_layers:encoded_layers = encoded_layers[-1]return encoded_layers, pooled_output

参考:https://blog.51cto.com/u_15060462/4254056

这篇关于pytorch版本的bert模型代码(MLM)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980779

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

IDEA如何切换数据库版本mysql5或mysql8

《IDEA如何切换数据库版本mysql5或mysql8》本文介绍了如何将IntelliJIDEA从MySQL5切换到MySQL8的详细步骤,包括下载MySQL8、安装、配置、停止旧服务、启动新服务以及... 目录问题描述解决方案第一步第二步第三步第四步第五步总结问题描述最近想开发一个新应用,想使用mysq

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Debian如何查看系统版本? 7种轻松查看Debian版本信息的实用方法

《Debian如何查看系统版本?7种轻松查看Debian版本信息的实用方法》Debian是一个广泛使用的Linux发行版,用户有时需要查看其版本信息以进行系统管理、故障排除或兼容性检查,在Debia... 作为最受欢迎的 linux 发行版之一,Debian 的版本信息在日常使用和系统维护中起着至关重要的作

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P