MHD、MQA、GQA注意力机制详解

2024-05-11 12:52
文章标签 详解 机制 注意力 mhd mqa gqa

本文主要是介绍MHD、MQA、GQA注意力机制详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MHD、MQA、GQA注意力机制详解

  • 注意力机制详解及代码
    • 前言:
    • MHA
    • MQA
    • GQA

注意力机制详解及代码

前言:

自回归解码器推理是 Transformer 模型的 一个严重瓶颈,因为在每个解码步骤中加 载解码器权重以及所有注意键和值会产生 内存带宽开销

下图为三种注意力机制的结构图和实验结果

在这里插入图片描述

在这里插入图片描述

MHA

多头注意力机制是Transformer模型中的核心组件。在其设计中,"多头"意味着该机制并不只计算一种注意力权重,而是并行计算多种权重,每种权重都从不同的“视角”捕获输入的不同信息。

  • hidden_state经过线性层得到q、k、v
  • q、k、v经过split后增加一个维度:num_heads
  • q、k计算注意力分数score
  • softmax对注意力分数进行归一化得到注意力权重attention_probs
  • 使用注意力权重和值计算输出:output
  • 对注意力输出进行拼接concat
import torch
from torch import nn
class MutiHeadAttention(torch.nn.Module):def __init__(self, hidden_size, num_heads):super(MutiHeadAttention, self).__init__()self.num_heads = num_headsself.head_dim = hidden_size // num_heads## 初始化Q、K、V投影矩阵self.q_linear = nn.Linear(hidden_size, hidden_size)self.k_linear = nn.Linear(hidden_size, hidden_size)self.v_linear = nn.Linear(hidden_size, hidden_size)## 输出线性层self.o_linear = nn.Linear(hidden_size, hidden_size)def forward(self, hidden_state, attention_mask=None):batch_size = hidden_state.size()[0]query = self.q_linear(hidden_state)key = self.k_linear(hidden_state)value = self.v_linear(hidden_state)query = self.split_head(query)key = self.split_head(key)value = self.split_head(value)## 计算注意力分数attention_scores = torch.matmul(query, key.transpose(-1, -2)) / torch.sqrt(torch.tensor(self.head_dim))if attention_mask != None:attention_scores += attention_mask * -1e-9## 对注意力分数进行归一化attention_probs = torch.softmax(attention_scores, dim=-1)output = torch.matmul(attention_probs, value)## 对注意力输出进行拼接output = output.transpose(-1, -2).contiguous().view(batch_size, -1, self.head_dim * self.num_heads)output = self.o_linear(output)return outputdef split_head(self, x):batch_size = x.size()[0]return x.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1,2)

MQA

多查询注意力(MQA)可能导致质量下降和训练不稳定,并且训练针对质量和推理优化的单独模型可能不可行。此外,虽然一些语言模型已经使用了多查询注意力,如PaLM但许多语言模型没有,包括公开可用的语言模型,如T5和LLaM.

  • hidden_state经过线性层得到q、k、v
  • q、k、v经过split后增加一个维度:num_heads(q = num_heads,k=1,v=1)。相当于多个query,即多查询。
  • q、k计算注意力分数score
  • softmax对注意力分数进行归一化得到注意力权重attention_probs
  • 使用注意力权重和值计算输出:output
  • 对注意力输出进行拼接concat
## 多查询注意力
import torch
from torch import nn
class MutiQueryAttention(torch.nn.Module):def __init__(self, hidden_size, num_heads):super(MutiQueryAttention, self).__init__()self.num_heads = num_headsself.head_dim = hidden_size // num_heads## 初始化Q、K、V投影矩阵self.q_linear = nn.Linear(hidden_size, hidden_size)self.k_linear = nn.Linear(hidden_size, self.head_dim) ###self.v_linear = nn.Linear(hidden_size, self.head_dim) ##### 输出线性层self.o_linear = nn.Linear(hidden_size, hidden_size)def forward(self, hidden_state, attention_mask=None):batch_size = hidden_state.size()[0]query = self.q_linear(hidden_state)key = self.k_linear(hidden_state)value = self.v_linear(hidden_state)query = self.split_head(query)key = self.split_head(key, 1)value = self.split_head(value, 1)## 计算注意力分数attention_scores = torch.matmul(query, key.transpose(-1, -2)) / torch.sqrt(torch.tensor(self.head_dim))if attention_mask != None:attention_scores += attention_mask * -1e-9## 对注意力分数进行归一化attention_probs = torch.softmax(attention_scores, dim=-1)output = torch.matmul(attention_probs, value)output = output.transpose(-1, -2).contiguous().view(batch_size, -1, self.head_dim * self.num_heads)output = self.o_linear(output)return outputdef split_head(self, x, head_num=None):batch_size = x.size()[0]if head_num == None:return x.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1,2)else:return x.view(batch_size, -1, head_num, self.head_dim).transpose(1,2)

GQA

  • 使用 5% 的原始预训练 计算将现有的多头语言模型检查点训 练到具有 MQA 的模型中
  • 引入分组查询注意力 (GQA),这是多 头语言模型的泛化。查询注意力,它使用中间,多于一个,少于查询头数量的键值头。
  • 经过训练的GQA 实现了接近多头注意力 的质量,并且速度与 MQA 相当。
  • hidden_state经过线性层得到q、k、v
  • q、k、v经过split后增加一个维度:num_heads(q = num_heads,k=group_num,v=group_num)。相当于把多头分组了,比如原先有10个头,那就是10个query,分成5组,每组2个query,1个value,1个key。
  • q、k计算注意力分数score
  • softmax对注意力分数进行归一化得到注意力权重attention_probs
  • 使用注意力权重和值计算输出:output
  • 对注意力输出进行拼接concat
## 分组注意力查询
import torch
from torch import nn
class MutiGroupAttention(torch.nn.Module):def __init__(self, hidden_size, num_heads, group_num):super(MutiGroupAttention, self).__init__()self.num_heads = num_headsself.head_dim = hidden_size // num_headsself.group_num = group_num## 初始化Q、K、V投影矩阵self.q_linear = nn.Linear(hidden_size, hidden_size)self.k_linear = nn.Linear(hidden_size, self.group_num * self.head_dim)self.v_linear = nn.Linear(hidden_size, self.group_num * self.head_dim)## 输出线性层self.o_linear = nn.Linear(hidden_size, hidden_size)def forward(self, hidden_state, attention_mask=None):batch_size = hidden_state.size()[0]query = self.q_linear(hidden_state)key = self.k_linear(hidden_state)value = self.v_linear(hidden_state)query = self.split_head(query)key = self.split_head(key, self.group_num)value = self.split_head(value, self.group_num)## 计算注意力分数attention_scores = torch.matmul(query, key.transpose(-1, -2)) / torch.sqrt(torch.tensor(self.head_dim))if attention_mask != None:attention_scores += attention_mask * -1e-9## 对注意力分数进行归一化attention_probs = torch.softmax(attention_scores, dim=-1)output = torch.matmul(attention_probs, value)output = output.transpose(-1, -2).contiguous().view(batch_size, -1, self.head_dim * self.num_heads)output = self.o_linear(output)return outputdef split_head(self, x, group_num=None):batch_size,seq_len = x.size()[:2]if group_num == None:return x.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1,2)else:x = x.view(batch_size, -1, group_num, self.head_dim).transpose(1,2)x = x[:, :, None, :, :].expand(batch_size, group_num, self.num_heads // group_num, seq_len, self.head_dim).reshape(batch_size, self.num_heads // group_num * group_num, seq_len, self.head_dim)return x

这篇关于MHD、MQA、GQA注意力机制详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979589

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor