ICP(迭代最近点)算法

2024-05-11 11:08
文章标签 算法 最近 迭代 icp

本文主要是介绍ICP(迭代最近点)算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图像配准是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对象的图像配准问题。具体地说,对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像映射到另一幅图像,使得两图中对应于空间同一位置的点一一对应起来,从而达到信息融合的目的。 一个经典的应用是场景的重建,比如说一张茶几上摆了很多杯具,用深度摄像机进行场景的扫描,通常不可能通过一次采集就将场景中的物体全部扫描完成,只能是获取场景不同角度的点云,然后将这些点云融合在一起,获得一个完整的场景。

  ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法。如下图所示,PR(红色点云)和RB(蓝色点云)是两个点集,该算法就是计算怎么把PB平移旋转,使PB和PR尽量重叠。

  用数学语言描述如下,即ICP算法的实质是基于最小二乘法的最优匹配,它重复进行“确定对应关系的点集→计算最优刚体变换”的过程,直到某个表示正确匹配的收敛准则得到满足。

ICP算法基本思想:

  如果知道正确的点对应,那么两个点集之间的相对变换(旋转、平移)就可以求得封闭解。

  首先计算两个点集X和P的质心,分别为μx和μp

  然后在两个点集中分别减去对应的质心(Subtract the corresponding center of mass from every point in the two point sets before calculating the transformation)

  目标函数E(R,t)的优化是ICP算法的最后一个阶段。在求得目标函数后,采用什么样的方法来使其收敛到最小,也是一个比较重要的问题。求解方法有基于奇异值分解的方法、四元数方法等。 

  如果初始点“足够近”,可以保证收敛性

ICP算法优点:

  • 可以获得非常精确的配准效果
  • 不必对处理的点集进行分割和特征提取
  • 在较好的初值情况下,可以得到很好的算法收敛性

ICP算法的不足之处: 

  • 在搜索对应点的过程中,计算量非常大,这是传统ICP算法的瓶颈
  • 标准ICP算法中寻找对应点时,认为欧氏距离最近的点就是对应点。这种假设有不合理之处,会产生一定数量的错误对应点

  针对标准ICP算法的不足之处,许多研究者提出ICP算法的各种改进版本,主要涉及如下所示的6个方面。

  标准ICP算法中,选用点集中所有的点来计算对应点,通常用于配准的点集元素数量都是非常巨大的,通过这些点集来计算,所消耗的时间很长。在后来的研究中,提出了各种方法来选择配准元素,这些方法的主要目的都是为了减小点集元素的数目,即如何选用最少的点来表征原始点集的全部特征信息。在点集选取时可以:1.选取所有点;2.均匀采样(Uniform sub-sampling );3.随机采样(Random sampling);4.按特征采样(Feature based Sampling );5.法向空间均匀采样(Normal-space sampling),如下图所示,法向采样保证了法向上的连续性(Ensure that samples have normals distributed as uniformly as possible)

  基于特征的采样使用一些具有明显特征的点集来进行配准,大量减少了对应点的数目。

  点集匹配上有:最近邻点(Closet Point)

  法方向最近邻点(Normal Shooting)

  投影法(Projection)

   根据之前算法的描述,下面使用Python来实现基本的ICP算法(代码参考了这里):

复制代码

import numpy as npdef best_fit_transform(A, B):'''Calculates the least-squares best-fit transform between corresponding 3D points A->BInput:A: Nx3 numpy array of corresponding 3D pointsB: Nx3 numpy array of corresponding 3D pointsReturns:T: 4x4 homogeneous transformation matrixR: 3x3 rotation matrixt: 3x1 column vector'''assert len(A) == len(B)# translate points to their centroidscentroid_A = np.mean(A, axis=0)centroid_B = np.mean(B, axis=0)AA = A - centroid_ABB = B - centroid_B# rotation matrixW = np.dot(BB.T, AA)U, s, VT = np.linalg.svd(W)R = np.dot(U, VT)# special reflection caseif np.linalg.det(R) < 0:VT[2,:] *= -1R = np.dot(U, VT)# translationt = centroid_B.T - np.dot(R,centroid_A.T)# homogeneous transformationT = np.identity(4)T[0:3, 0:3] = RT[0:3, 3] = treturn T, R, tdef nearest_neighbor(src, dst):'''Find the nearest (Euclidean) neighbor in dst for each point in srcInput:src: Nx3 array of pointsdst: Nx3 array of pointsOutput:distances: Euclidean distances (errors) of the nearest neighborindecies: dst indecies of the nearest neighbor'''indecies = np.zeros(src.shape[0], dtype=np.int)distances = np.zeros(src.shape[0])for i, s in enumerate(src):min_dist = np.inffor j, d in enumerate(dst):dist = np.linalg.norm(s-d)if dist < min_dist:min_dist = distindecies[i] = jdistances[i] = dist    return distances, indeciesdef icp(A, B, init_pose=None, max_iterations=50, tolerance=0.001):'''The Iterative Closest Point methodInput:A: Nx3 numpy array of source 3D pointsB: Nx3 numpy array of destination 3D pointinit_pose: 4x4 homogeneous transformationmax_iterations: exit algorithm after max_iterationstolerance: convergence criteriaOutput:T: final homogeneous transformationdistances: Euclidean distances (errors) of the nearest neighbor'''# make points homogeneous, copy them so as to maintain the originalssrc = np.ones((4,A.shape[0]))dst = np.ones((4,B.shape[0]))src[0:3,:] = np.copy(A.T)dst[0:3,:] = np.copy(B.T)# apply the initial pose estimationif init_pose is not None:src = np.dot(init_pose, src)prev_error = 0for i in range(max_iterations):# find the nearest neighbours between the current source and destination pointsdistances, indices = nearest_neighbor(src[0:3,:].T, dst[0:3,:].T)# compute the transformation between the current source and nearest destination pointsT,_,_ = best_fit_transform(src[0:3,:].T, dst[0:3,indices].T)# update the current source# refer to "Introduction to Robotics" Chapter2 P28. Spatial description and transformationssrc = np.dot(T, src)# check errormean_error = np.sum(distances) / distances.sizeif abs(prev_error-mean_error) < tolerance:breakprev_error = mean_error# calculcate final tranformationT,_,_ = best_fit_transform(A, src[0:3,:].T)return T, distancesif __name__ == "__main__":A = np.random.randint(0,101,(20,3))    # 20 points for testrotz = lambda theta: np.array([[np.cos(theta),-np.sin(theta),0],[np.sin(theta),np.cos(theta),0],[0,0,1]])trans = np.array([2.12,-0.2,1.3])B = A.dot(rotz(np.pi/4).T) + transT, distances = icp(A, B)np.set_printoptions(precision=3,suppress=True)print T

复制代码

  上面代码创建一个源点集A(在0-100的整数范围内随机生成20个3维数据点),然后将A绕Z轴旋转45°并沿XYZ轴分别移动一小段距离,得到点集B。结果如下,可以看出ICP算法正确的计算出了变换矩阵。

 

 

 

需要注意几点:

 1.首先需要明确公式里的变换是T(P→X), 即通过旋转和平移把点集P变换到X。我们这里求的变换是T(A→B),要搞清楚对应关系。

 2.本例只用了20个点进行测试,ICP算法在求最近邻点的过程中需要计算20×20次距离并比较大小。如果点的数目巨大,那算法的效率将非常低。

 3.两个点集的初始相对位置对算法的收敛性有一定影响,最好在“足够近”的条件下进行ICP配准。

        

参考:

Iterative Closest Point (ICP) and other matching algorithms

http://www.mrpt.org/Iterative_Closest_Point_%28ICP%29_and_other_matching_algorithms

PCL学习笔记二:Registration (ICP算法)

http://www.voidcn.com/blog/u010696366/article/p-3712120.html

https://github.com/ClayFlannigan/icp/blob/master/icp.py

ICP迭代最近点算法综述

http://wenku.baidu.com/link?url=iJJoFALkKpgMl7ilivLCM3teN5yn60TKt5uWM6hIZejYPob8Rcy1R4Tm_2ZyX_DvX_Su9XBFCfPc4TqHioU0Gb93jKbhoj-TQ70vfn4VEJC

这篇关于ICP(迭代最近点)算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979356

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Mybatis从3.4.0版本到3.5.7版本的迭代方法实现

《Mybatis从3.4.0版本到3.5.7版本的迭代方法实现》本文主要介绍了Mybatis从3.4.0版本到3.5.7版本的迭代方法实现,包括主要的功能增强、不兼容的更改和修复的错误,具有一定的参考... 目录一、3.4.01、主要的功能增强2、selectCursor example3、不兼容的更改二、

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1