ICP(迭代最近点)算法

2024-05-11 11:08
文章标签 算法 最近 迭代 icp

本文主要是介绍ICP(迭代最近点)算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图像配准是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对象的图像配准问题。具体地说,对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像映射到另一幅图像,使得两图中对应于空间同一位置的点一一对应起来,从而达到信息融合的目的。 一个经典的应用是场景的重建,比如说一张茶几上摆了很多杯具,用深度摄像机进行场景的扫描,通常不可能通过一次采集就将场景中的物体全部扫描完成,只能是获取场景不同角度的点云,然后将这些点云融合在一起,获得一个完整的场景。

  ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法。如下图所示,PR(红色点云)和RB(蓝色点云)是两个点集,该算法就是计算怎么把PB平移旋转,使PB和PR尽量重叠。

  用数学语言描述如下,即ICP算法的实质是基于最小二乘法的最优匹配,它重复进行“确定对应关系的点集→计算最优刚体变换”的过程,直到某个表示正确匹配的收敛准则得到满足。

ICP算法基本思想:

  如果知道正确的点对应,那么两个点集之间的相对变换(旋转、平移)就可以求得封闭解。

  首先计算两个点集X和P的质心,分别为μx和μp

  然后在两个点集中分别减去对应的质心(Subtract the corresponding center of mass from every point in the two point sets before calculating the transformation)

  目标函数E(R,t)的优化是ICP算法的最后一个阶段。在求得目标函数后,采用什么样的方法来使其收敛到最小,也是一个比较重要的问题。求解方法有基于奇异值分解的方法、四元数方法等。 

  如果初始点“足够近”,可以保证收敛性

ICP算法优点:

  • 可以获得非常精确的配准效果
  • 不必对处理的点集进行分割和特征提取
  • 在较好的初值情况下,可以得到很好的算法收敛性

ICP算法的不足之处: 

  • 在搜索对应点的过程中,计算量非常大,这是传统ICP算法的瓶颈
  • 标准ICP算法中寻找对应点时,认为欧氏距离最近的点就是对应点。这种假设有不合理之处,会产生一定数量的错误对应点

  针对标准ICP算法的不足之处,许多研究者提出ICP算法的各种改进版本,主要涉及如下所示的6个方面。

  标准ICP算法中,选用点集中所有的点来计算对应点,通常用于配准的点集元素数量都是非常巨大的,通过这些点集来计算,所消耗的时间很长。在后来的研究中,提出了各种方法来选择配准元素,这些方法的主要目的都是为了减小点集元素的数目,即如何选用最少的点来表征原始点集的全部特征信息。在点集选取时可以:1.选取所有点;2.均匀采样(Uniform sub-sampling );3.随机采样(Random sampling);4.按特征采样(Feature based Sampling );5.法向空间均匀采样(Normal-space sampling),如下图所示,法向采样保证了法向上的连续性(Ensure that samples have normals distributed as uniformly as possible)

  基于特征的采样使用一些具有明显特征的点集来进行配准,大量减少了对应点的数目。

  点集匹配上有:最近邻点(Closet Point)

  法方向最近邻点(Normal Shooting)

  投影法(Projection)

   根据之前算法的描述,下面使用Python来实现基本的ICP算法(代码参考了这里):

复制代码

import numpy as npdef best_fit_transform(A, B):'''Calculates the least-squares best-fit transform between corresponding 3D points A->BInput:A: Nx3 numpy array of corresponding 3D pointsB: Nx3 numpy array of corresponding 3D pointsReturns:T: 4x4 homogeneous transformation matrixR: 3x3 rotation matrixt: 3x1 column vector'''assert len(A) == len(B)# translate points to their centroidscentroid_A = np.mean(A, axis=0)centroid_B = np.mean(B, axis=0)AA = A - centroid_ABB = B - centroid_B# rotation matrixW = np.dot(BB.T, AA)U, s, VT = np.linalg.svd(W)R = np.dot(U, VT)# special reflection caseif np.linalg.det(R) < 0:VT[2,:] *= -1R = np.dot(U, VT)# translationt = centroid_B.T - np.dot(R,centroid_A.T)# homogeneous transformationT = np.identity(4)T[0:3, 0:3] = RT[0:3, 3] = treturn T, R, tdef nearest_neighbor(src, dst):'''Find the nearest (Euclidean) neighbor in dst for each point in srcInput:src: Nx3 array of pointsdst: Nx3 array of pointsOutput:distances: Euclidean distances (errors) of the nearest neighborindecies: dst indecies of the nearest neighbor'''indecies = np.zeros(src.shape[0], dtype=np.int)distances = np.zeros(src.shape[0])for i, s in enumerate(src):min_dist = np.inffor j, d in enumerate(dst):dist = np.linalg.norm(s-d)if dist < min_dist:min_dist = distindecies[i] = jdistances[i] = dist    return distances, indeciesdef icp(A, B, init_pose=None, max_iterations=50, tolerance=0.001):'''The Iterative Closest Point methodInput:A: Nx3 numpy array of source 3D pointsB: Nx3 numpy array of destination 3D pointinit_pose: 4x4 homogeneous transformationmax_iterations: exit algorithm after max_iterationstolerance: convergence criteriaOutput:T: final homogeneous transformationdistances: Euclidean distances (errors) of the nearest neighbor'''# make points homogeneous, copy them so as to maintain the originalssrc = np.ones((4,A.shape[0]))dst = np.ones((4,B.shape[0]))src[0:3,:] = np.copy(A.T)dst[0:3,:] = np.copy(B.T)# apply the initial pose estimationif init_pose is not None:src = np.dot(init_pose, src)prev_error = 0for i in range(max_iterations):# find the nearest neighbours between the current source and destination pointsdistances, indices = nearest_neighbor(src[0:3,:].T, dst[0:3,:].T)# compute the transformation between the current source and nearest destination pointsT,_,_ = best_fit_transform(src[0:3,:].T, dst[0:3,indices].T)# update the current source# refer to "Introduction to Robotics" Chapter2 P28. Spatial description and transformationssrc = np.dot(T, src)# check errormean_error = np.sum(distances) / distances.sizeif abs(prev_error-mean_error) < tolerance:breakprev_error = mean_error# calculcate final tranformationT,_,_ = best_fit_transform(A, src[0:3,:].T)return T, distancesif __name__ == "__main__":A = np.random.randint(0,101,(20,3))    # 20 points for testrotz = lambda theta: np.array([[np.cos(theta),-np.sin(theta),0],[np.sin(theta),np.cos(theta),0],[0,0,1]])trans = np.array([2.12,-0.2,1.3])B = A.dot(rotz(np.pi/4).T) + transT, distances = icp(A, B)np.set_printoptions(precision=3,suppress=True)print T

复制代码

  上面代码创建一个源点集A(在0-100的整数范围内随机生成20个3维数据点),然后将A绕Z轴旋转45°并沿XYZ轴分别移动一小段距离,得到点集B。结果如下,可以看出ICP算法正确的计算出了变换矩阵。

 

 

 

需要注意几点:

 1.首先需要明确公式里的变换是T(P→X), 即通过旋转和平移把点集P变换到X。我们这里求的变换是T(A→B),要搞清楚对应关系。

 2.本例只用了20个点进行测试,ICP算法在求最近邻点的过程中需要计算20×20次距离并比较大小。如果点的数目巨大,那算法的效率将非常低。

 3.两个点集的初始相对位置对算法的收敛性有一定影响,最好在“足够近”的条件下进行ICP配准。

        

参考:

Iterative Closest Point (ICP) and other matching algorithms

http://www.mrpt.org/Iterative_Closest_Point_%28ICP%29_and_other_matching_algorithms

PCL学习笔记二:Registration (ICP算法)

http://www.voidcn.com/blog/u010696366/article/p-3712120.html

https://github.com/ClayFlannigan/icp/blob/master/icp.py

ICP迭代最近点算法综述

http://wenku.baidu.com/link?url=iJJoFALkKpgMl7ilivLCM3teN5yn60TKt5uWM6hIZejYPob8Rcy1R4Tm_2ZyX_DvX_Su9XBFCfPc4TqHioU0Gb93jKbhoj-TQ70vfn4VEJC

这篇关于ICP(迭代最近点)算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979356

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj1330(LCA最近公共祖先)

题意:求最近公共祖先 思路:之前学习了树链剖分,然后我就用树链剖分的一小部分知识就可以解这个题目了,记录每个结点的fa和depth。然后查找时,每次将depth大的结点往上走直到x = y。 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring>

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int