代码随想录算法训练营第四十九天| 123.买卖股票的最佳时机III,188.买卖股票的最佳时机IV

本文主要是介绍代码随想录算法训练营第四十九天| 123.买卖股票的最佳时机III,188.买卖股票的最佳时机IV,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

题目链接:123.买卖股票的最佳时机III

思路

代码

题目链接:188.买卖股票的最佳时机IV

思路

代码

总结


题目链接:123.买卖股票的最佳时机III

思路

        与之前买卖股票不同的是本题要求最多买卖两次,那么dp数组以及递推公式都有所改变。

        ①dp数组,dp[i][j]表示第i天剩余的最大金币,j表示操作状态:

                0表示无操作

                1表示第一次持有股票

                2表示第一次不持有股票

                3表示第二次持有股票

                4表示第二次不持有股票

                五种状态都是依次连续的:

                        无操作->第一次持有->第一次不持有->第二次持有->第二次不持有

        ②递推公式,要包含上述五种状态的更新

                dp[i][0] = dp[i-1][0] 无操作与前一天保持一样

                dp[i][1] = max(dp[i-1][1], dp[i-1][0] - price[i]) 可能之前就买过;如果没买,说明之前都是无操作的状态

                dp[i][2] = max(dp[i-1][2], dp[i-1][1] + price[i]) 可能之前就卖了;如果没卖,说明第一次买的还在,今天卖

                dp[i][3] = max(dp[i-1][3], dp[i-1][2] - price[i]) 可能进行了一次买卖后,第二次买入了;如果没买,说明已经进行了第一次的股票买卖,还没进行第二次

                dp[i][4] = max(dp[i-1][4], dp[i-1][3] + price[i]) 可能将第二次买的股票卖了,或者今天卖

        ③dp数组初始化

                dp[0][0] = 0 无操作就是0

                dp[0][1] = -price[i] 第一天持有,表示第一天买入,减去当天股票价格

                dp[0][2] = 0 第一天不持有,表示没有买入,还是0

                dp[0][3] = -price[i] 与第一次情况相同,可以认为第一天买了又卖了,现在是第二次

                dp[0][4] = 0 第二次不持有,表示没有买入,还是0

        ④遍历顺序,正序遍历,因为所有的状态更新都依赖于前一天

        ⑤推导dp数组

代码

class Solution {
public:// dp数组第一维表示第i天,第二维表示状态// 0表示无操作// 1表示第一次持有// 2表示第一次不持有// 3表示第二次持有// 4表示第二次不持有int maxProfit(vector<int>& prices) {int len = prices.size();if (len == 1)return 0;vector<vector<int>> dp(len, vector<int>(5, 0));// dp数组初始化dp[0][0] = 0;dp[0][1] = -prices[0];dp[0][2] = 0;dp[0][3] = -prices[0];dp[0][4] = 0;for (int i = 1; i < len; i++) {// 五种状态的更新dp[i][0] = dp[i - 1][0];dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[len - 1][4];}
};

题目链接:188.买卖股票的最佳时机IV

思路

        原理与123.买卖股票的最佳时机Ⅲ相同,可以买卖k次,创建dp数组时,第二维空间2k+1,初始化以及状态更新时用for循环。

代码

class Solution {
public:// dp数组第一维表示第i天// 第二维奇数表示第j次持有,偶数表示第j次不持有,0表示无操作int maxProfit(int k, vector<int>& prices) {int len = prices.size();if (len == 1)return 0;// 每次交易都包含持有和未持有两种状态,还有0表示无操作,所以共计2*k+1个状态int s = 2 * k + 1;vector<vector<int>> dp(len, vector<int>(s, 0));// dp数组初始化,j从到2*kfor (int j = 0; j < s; j++) {if (j % 2 == 1) {dp[0][j] = -prices[0];} else {dp[0][j] = 0;}}// dp数组状态更新for (int i = 1; i < len; i++) {dp[i][0] = dp[i - 1][0]; // 无操作单独赋值for (int j = 1; j < s; j++) {// 奇数表示持有,偶数表示未持有// 每种状态都由前一天推导而来,涉及前一天的当前状态和前一种状态if (j % 2 == 1) {dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - 1] - prices[i]);} else {dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - 1] + prices[i]);}}}return dp[len - 1][2 * k];}
};

总结

        ①买卖股票Ⅰ和Ⅱ分别是只能买卖一次和不限次数的买卖;买卖股票Ⅲ和Ⅳ分别是只能买卖两次和买卖k次。相同点是当天的状态只能由昨天推导而来,不同点是状态的多少

        ②看了买卖股票Ⅲ的题解,AC后,单独完成了买卖股票Ⅳ,规律性很强

        ③在做这类题时,最重要的是搞清楚dp数组的含义,并且要包含所有的状态

这篇关于代码随想录算法训练营第四十九天| 123.买卖股票的最佳时机III,188.买卖股票的最佳时机IV的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978552

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int