deepspeed+transformers模型微调

2024-05-10 23:28

本文主要是介绍deepspeed+transformers模型微调,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、目录

  1. 代码讲解

二、实现。

1、代码讲解,trainer 实现。
transformers通过trainer 集成deepspeed功能,所以中需要进行文件配置,即可实现deepspeed的训练。
微调代码: 参数定义—>数据处理---->模型创建/评估方式---->trainer 框架训练
注意: V100 显卡,不包括float16 精度训练。

import deepspeed
deepspeed.ops.op_builder.CPUAdamBuilder().load()
import nltk
import torch
import evaluate
import datasets
import numpy as np
from nltk.tokenize import sent_tokenize
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments
nltk.download("punkt")
import gc
import torch######################################定义参数####################################
dataset_name = "samsum" # 数据集名称
#model_name="google/flan-t5-xxl" # 模型名称
model_name="google/flan-t5-xl" # 模型名称
max_input_length = 256
max_gen_length = 128
output_dir = "checkpoints"
num_train_epochs = 5
learning_rate = 5e-5
deepspeed_config = "ds_config.json" #          deepspeed配置文件
per_device_train_batch_size=5 # batch size设置为1,因为太大导致OOM
per_device_eval_batch_size=5
gradient_accumulation_steps=10 # 由于单卡的batch size为1,为了扩展batch size,使用梯度累加#################################加载数据集,与数据预处理#########################################
tokenizer = AutoTokenizer.from_pretrained(model_name)
dataset = datasets.load_dataset(dataset_name)
print(dataset["train"][0])def preprocess(examples):dialogues = ["summarize:" + dia for dia in examples["dialogue"]]# summaries = [summ for summ in examples["summary"]]model_inputs = tokenizer(dialogues, max_length=max_input_length, truncation=True)labels = tokenizer(text_target=examples["summary"], max_length=max_gen_length, truncation=True)model_inputs["labels"] = labels["input_ids"]return model_inputstokenized_dataset = dataset.map(preprocess, batched=True, remove_columns=["dialogue", "summary", "id"])
# print(tokenized_dataset["train"]["input_ids"][0]) # 打印结果    对map后的数据进行查看。def collate_fn(features):batch_input_ids = [torch.LongTensor(feature["input_ids"]) for feature in features]batch_attention_mask = [torch.LongTensor(feature["attention_mask"]) for feature in features]batch_labels = [torch.LongTensor(feature["labels"]) for feature in features]batch_input_ids = pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)batch_attention_mask = pad_sequence(batch_attention_mask, batch_first=True, padding_value=0)batch_labels = pad_sequence(batch_labels, batch_first=True, padding_value=-100)return {"input_ids": batch_input_ids,"attention_mask": batch_attention_mask,"labels": batch_labels}##############################加载模型,采用seq2seqLM模型,并进行测试##############################
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)#用于测试的代码
#dataloader = DataLoader(tokenized_dataset["test"], shuffle=False, batch_size=4, collate_fn=collate_fn)
# batch = next(iter(dataloader))
# #print(batch)
# # 用于测试的代码
# dataloader = DataLoader(tokenized_dataset["test"], shuffle=False, batch_size=4, collate_fn=collate_fn)
# batch = next(iter(dataloader))
# output = model(**batch)
#print(output)
#############################################模型训练,并采用trainer 架构####################################
print("==========train....================")
metric = evaluate.load("rouge")
def compute_metrics(eval_preds):preds, labels = eval_predsif isinstance(preds, tuple):preds = preds[0]decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)labels = np.where(labels != -100, labels, tokenizer.pad_token_id)decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)decoded_preds = ["\n".join(sent_tokenize(pred.strip())) for pred in decoded_preds]decoded_labels = ["\n".join(sent_tokenize(label.strip())) for label in decoded_labels]result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)result = {k: round(v * 100, 4) for k, v in result.items()}prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]result["gen_len"] = np.mean(prediction_lens)return resulttraining_args = Seq2SeqTrainingArguments(output_dir=output_dir,per_device_train_batch_size=per_device_train_batch_size,per_device_eval_batch_size=per_device_eval_batch_size,gradient_accumulation_steps=gradient_accumulation_steps,eval_accumulation_steps=1, # 防止评估时导致OOMpredict_with_generate=True,learning_rate=learning_rate,num_train_epochs=num_train_epochs,# logging & evaluation strategieslogging_dir="logs",logging_strategy="steps",logging_steps=50, # 每50个step打印一次logevaluation_strategy="steps",eval_steps=500, # 每500个step进行一次评估save_steps=500,save_total_limit=2,load_best_model_at_end=True,deepspeed=deepspeed_config,                        # deepspeed配置文件的位置report_to="all"
)trainer = Seq2SeqTrainer(model=model,args=training_args,train_dataset=tokenized_dataset["train"],eval_dataset=tokenized_dataset["validation"],data_collator=collate_fn,compute_metrics=compute_metrics,
)
trainer.train()
gc.collect()
torch.cuda.empty_cache()
# 打印验证集上的结果
# print(trainer.evaluate(tokenized_dataset["validation"]))
# # 打印测试集上的结果
# print(trainer.evaluate(tokenized_dataset["test"]))
# 保存最优模型
trainer.save_model("best.pt")
#export NCCL_IB_DISABLE=1; export NCCL_P2P_DISABLE=1; NCCL_DEBUG=INFO deepspeed --include=localhost:0,1 test1.py

配置文件:ds_config.json

{"fp16": {"enabled": "auto"},"optimizer": {"type": "AdamW","params": {"lr": "auto","betas": "auto","eps": "auto","weight_decay": "auto"}},"scheduler": {"type": "WarmupLR","params": {"warmup_min_lr": "auto","warmup_max_lr": "auto","warmup_num_steps": "auto"}},"zero_optimization": {"stage": 3,"offload_optimizer": {"device": "cpu","pin_memory": true},"offload_param": {"device": "cpu","pin_memory": true},"overlap_comm": true,"contiguous_gradients": true,"sub_group_size": 1e9,"reduce_bucket_size": "auto","stage3_prefetch_bucket_size": "auto","stage3_param_persistence_threshold": "auto","stage3_max_live_parameters": 1e9,"stage3_max_reuse_distance": 1e9,"stage3_gather_16bit_weights_on_model_save": false},"gradient_accumulation_steps": "auto","gradient_clipping": "auto","steps_per_print": 2000,"train_batch_size": "auto","train_micro_batch_size_per_gpu": "auto","wall_clock_breakdown": false
}

启动: 单机多卡

export NCCL_IB_DISABLE=1; export NCCL_P2P_DISABLE=1; NCCL_DEBUG=INFO deepspeed --include=localhost:0,1 test1.py>output.log 2>&1 &

二、代码讲解,peft微调+trainer 实现。

import os
import torch
import random
import datasets
import numpy as np
from typing import Dict
from transformers import (AutoModelForCausalLM,AutoTokenizer,DataCollatorForSeq2Seq,TrainingArguments,Trainer
)
from peft import (LoraConfig,TaskType,get_peft_model,get_peft_model_state_dict,
)def set_random_seed(seed):if seed is not None and seed > 0:random.seed(seed)np.random.seed(seed)torch.manual_seed(seed)torch.random.manual_seed(seed)torch.cuda.manual_seed(seed)torch.cuda.manual_seed_all(seed)torch.backends.cudnn.deterministic = Trueset_random_seed(1234)# 1. 设置参数
# LoRA参数
LORA_R = 8
LORA_ALPHA = 32
LORA_DROPOUT = 0.1
# 训练参数
EPOCHS=3
LEARNING_RATE=5e-5
OUTPUT_DIR="./checkpoints"
BATCH_SIZE=4 # 2
GRADIENT_ACCUMULATION_STEPS=3
# 其他参数
MODEL_PATH = "bigscience/bloomz-7b1-mt"
DATA_PATH = "./data/belle_open_source_1M.train.json"
MAX_LENGTH = 512
PATTERN = "{}\n{}"
DS_CONFIG = "ds_zero2_config.json"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) # 加载tokenizer
# 加载数据
dataset = datasets.load_dataset("json", data_files=DATA_PATH)
# print(dataset["train"][0])# 2. tokenize
def tokenize(text: str, add_eos_token=True):result = tokenizer(text,truncation=True,max_length=MAX_LENGTH,padding=False,return_tensors=None)# 判断是否要添加eos_tokenif (result["input_ids"][-1] != tokenizer.eos_token_idand len(result["input_ids"]) < MAX_LENGTHand add_eos_token):result["input_ids"].append(tokenizer.eos_token_id)result["attention_mask"].append(1)result["labels"] = result["input_ids"].copy()return resultdef preprocess(example: Dict, train_on_inputs: bool = False):prompt = example["input"]response = example["target"]text = PATTERN.format(prompt, response)tokenized_inp = tokenize(text)# 若train_on_inputs为False,则将label中与input相关的token替换为-100if not train_on_inputs:tokenized_prompt = tokenize(prompt,add_eos_token=False)prompt_tokens_len = len(tokenized_prompt["input_ids"])tokenized_inp["labels"] = [-100]*prompt_tokens_len + tokenized_inp["labels"][prompt_tokens_len:]return tokenized_inptrain_data = dataset["train"].shuffle().map(preprocess, remove_columns=["id", "input", "target"])
print(train_data[0])# pad_to_multiple_of=8表示padding的长度是8的倍数
collate_fn = DataCollatorForSeq2Seq(tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True)# 2. 加载模型
evice_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
# device_map指定模型加载的GPU;troch_dtype=torch.float16表示半精度加载模型
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, torch_dtype=torch.float16, device_map=device_map)# 3. LoRA相关
lora_config = LoraConfig(task_type=TaskType.CAUSAL_LM,inference_mode=False,r=LORA_R,                         # LoRA中低秩近似的秩lora_alpha=LORA_ALPHA,            # 见上文中的低秩矩阵缩放超参数lora_dropout=LORA_DROPOUT,       # LoRA层的dropout
)
# 转换模型
model = get_peft_model(model, lora_config)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
# 打印模型中的可训练参数
model.print_trainable_parameters()# 4. 训练参数
args = TrainingArguments(output_dir=OUTPUT_DIR, # checkpoint的存储目录per_device_train_batch_size=BATCH_SIZE, # 单设备上的batch sizegradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, # 梯度累加的step数warmup_steps=100,num_train_epochs=EPOCHS,learning_rate=LEARNING_RATE,fp16=True, # 使用混合精度训练logging_steps=50,evaluation_strategy="no", # 不进行评估save_strategy="steps",save_steps=2000, # 保存checkpoint的step数save_total_limit=5, # 最多保存5个checkpointdeepspeed=DS_CONFIG                               #deepspeed 配置
)# 5. 模型训练
trainer = Trainer(model=model,train_dataset=train_data,eval_dataset=None,args=args,data_collator=collate_fn
)
trainer.train()
model.save_pretrained("best_model")
{"train_micro_batch_size_per_gpu": "auto","gradient_accumulation_steps": "auto","steps_per_print": 50,"gradient_clipping": 1.0,"zero_optimization": {"stage": 2,"offload_optimizer": {"device": "cpu"},"contiguous_gradients": true,"overlap_comm": true},"zero_allow_untested_optimizer": true,"fp16": {"enabled": true,"loss_scale": 0,"loss_scale_window": 1000,"hysteresis": 2,"min_loss_scale": 1},"optimizer": {"type": "Adam","params": {"lr": "auto","betas": "auto","eps": "auto","weight_decay": "auto"}},"activation_checkpointing": {"partition_activations": true,"contiguous_memory_optimization": true},"wall_clock_breakdown": false
}

这篇关于deepspeed+transformers模型微调的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/977859

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号