同样都是鸾尾花iris数据,为什么PCA图相反?

2024-05-10 17:52

本文主要是介绍同样都是鸾尾花iris数据,为什么PCA图相反?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PCA简介

主成分分析(principle component analysis)是一种线性降维方法。它利用正交变换对一系列可能相关的变量的观测值进行线性变换,从而投影为一系列线性不相关变量的值,这些不相关变量称为主成分(Principal Components)。PCA是一种对数据进行简化分析的技术,可以有效地找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。

网络上的两种不同结果

使用鸾尾花(iris)数据进行PCA分析时,相同的数据,在网上会有两种不同的结果图。

仔细看会发现,这两个图的X轴是一样的,Y轴反了。

这是怎么回事,到底哪个是对的?

PCA绘图代码1

library("FactoMineR")

library("factoextra")

data(iris)

iris.pca <- PCA(iris[,-5], graph = F)

fviz_pca_ind(iris.pca,

             geom.ind = "point", # show points only (nbut not "text")

             col.ind = iris$Species, # color by groups

             palette = c("#00AFBB", "#E7B800", "#FC4E07"),

             addEllipses = TRUE, # Concentration ellipses

             legend.title = "Groups")

绘图代码2

library(ggplot2)

data(iris)

iris.pca <- prcomp(iris[,-5], scale=T)

df_pcs <-data.frame(iris.pca$x, Species = iris$Species) 

ggplot(df_pcs,aes(x=PC1,y=PC2,color = Species))+ geom_point()+stat_ellipse(level = 0.95, show.legend = F)

在R中运行后,出的图确实是相反的。经过对比,发现计算PCA时用的函数不一样,一个是iris.pca <- PCA(iris[,-5], graph = F)(默认scale);一个是iris.pca <- prcomp(iris[,-5], scale=T)。问题就出在这里。

经过检索,在stackexchange上有人回答了这个问题。

A PCA decomposition maps the original variables into new dimensions which capture the highest amount of variability. Note that the directionality of these dimensions is completely irrelevant - given a dimension that captures some amount of variability,

the negation of that dimension also captures the exact same amount of variability.

Because of this, the positive/negative direction of a PCA dimension may be arbitrarily chosen. Different software packages may produce different results depending on how they are coded, and slight variations in the input data could also result in a near-identical but flipped PCA plot.

也就是说不同的软件包/函数,包括:prcomp()princomp() [R内置stat]

PCA() [FactoMineR]dudi.pca() [ade4]epPCA() [ExPosition]ggbiplot[ggbiplot]等,它们的结果会依赖于代码、平台(linuxwindowsmac),及输入数据的微小变化,产生几乎一样但是翻转的(flippedPCA结果。

感兴趣的小伙伴可以带入代码试试看。

微生信助力高分文章,用户175000,谷歌学术3200

这篇关于同样都是鸾尾花iris数据,为什么PCA图相反?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/977136

相关文章

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS

关于MySQL将表中数据删除后多久空间会被释放出来

《关于MySQL将表中数据删除后多久空间会被释放出来》MySQL删除数据后,空间不会立即释放给操作系统,而是会被标记为“可重用”,以供未来插入新数据时使用,只有满足特定条件时,空间才可能真正返还给操作... 目录一、mysql数据删除与空间管理1.1 理解MySQL数据删除原理1.3 执行SQL1.3 使用